Suppr超能文献

使用贝叶斯网络预测肝移植患者的生存率。

Using Bayesian networks to predict survival of liver transplant patients.

作者信息

Hoot Nathan, Aronsky Dominik

机构信息

Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA.

出版信息

AMIA Annu Symp Proc. 2005;2005:345-9.

Abstract

The relative scarcity of grafts available for liver transplantation highlights the need to identify patients likely to have good outcomes after treatment. We used transplant information from the United Network for Organ Sharing database to construct a Bayesian network model to predict 90-day graft survival. The final model incorporated a set of 29 pre-transplant variables, and it achieved performance, as measured by area under the receiver operating characteristic curve, of 0.674 by cross-validation and 0.681 on an independent validation set. The results showed a positive predictive value of 91%, while the negative predictive value was lower at 30%. With additional refinement and validation, our model may be useful as an adjunct to clinical experience in identifying patients most likely to have good outcomes following liver transplantation.

摘要

可用于肝移植的移植物相对稀缺,这凸显了识别治疗后可能有良好预后患者的必要性。我们利用器官共享联合网络数据库中的移植信息构建了一个贝叶斯网络模型,以预测90天移植物存活率。最终模型纳入了一组29个移植前变量,通过交叉验证,其受试者操作特征曲线下面积衡量的性能为0.674,在独立验证集上为0.681。结果显示阳性预测值为91%,而阴性预测值较低,为30%。经过进一步完善和验证,我们的模型可能有助于临床经验,用于识别肝移植后最有可能有良好预后的患者。

相似文献

引用本文的文献

6
An Approach for Incorporating Context in Building Probabilistic Predictive Models.一种在构建概率预测模型时纳入上下文的方法。
Proc IEEE Int Conf Healthc Inform Imaging Syst Biol. 2012 Sep;2012:96-105. doi: 10.1109/HISB.2012.30. Epub 2012 Dec 3.

本文引用的文献

5
Predictive factors for early mortality following liver transplantation.
Clin Transplant. 2003 Oct;17(5):401-11. doi: 10.1034/j.1399-0012.2003.00068.x.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验