Suppr超能文献

验证人工神经网络作为肝移植供体-受者匹配方法的研究。

Validation of artificial neural networks as a methodology for donor-recipient matching for liver transplantation.

机构信息

Unit of Hepatobiliary Surgery and Liver Transplantation, Córdoba, Spain.

Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain.

出版信息

Liver Transpl. 2018 Feb;24(2):192-203. doi: 10.1002/lt.24870.

Abstract

In 2014, we reported a model for donor-recipient (D-R) matching in liver transplantation (LT) based on artificial neural networks (ANNs) from a Spanish multicenter study (Model for Allocation of Donor and Recipient in España [MADR-E]). The aim is to test the ANN-based methodology in a different European health care system in order to validate it. An ANN model was designed using a cohort of patients from King's College Hospital (KCH; n = 822). The ANN was trained and tested using KCH pairs for both 3- and 12-month survival models. End points were probability of graft survival (correct classification rate [CCR]) and nonsurvival (minimum sensitivity [MS]). The final model is a rule-based system for facilitating the decision about the most appropriate D-R matching. Models designed for KCH had excellent prediction capabilities for both 3 months (CCR-area under the curve [AUC] = 0.94; MS-AUC = 0.94) and 12 months (CCR-AUC = 0.78; MS-AUC = 0.82), almost 15% higher than the best obtained by other known scores such as Model for End-Stage Liver Disease and balance of risk. Moreover, these results improve the previously reported ones in the multicentric MADR-E database. In conclusion, the use of ANN for D-R matching in LT in other health care systems achieved excellent prediction capabilities supporting the validation of these tools. It should be considered as the most advanced, objective, and useful tool to date for the management of waiting lists. Liver Transplantation 24 192-203 2018 AASLD.

摘要

2014 年,我们报道了一个基于西班牙多中心研究(西班牙供体与受体分配模型 [MADR-E])的人工神经网络(ANNs)的肝移植(LT)供体-受体(D-R)匹配模型。目的是在不同的欧洲医疗保健系统中测试基于 ANN 的方法,以验证其有效性。使用来自国王学院医院(KCH;n=822)的患者队列设计了一个 ANN 模型。该 ANN 使用 KCH 对进行训练和测试,以用于 3 个月和 12 个月的生存模型。终点是移植物存活率的概率(正确分类率 [CCR])和非存活率(最小灵敏度 [MS])。最终模型是一个基于规则的系统,用于促进关于最合适的 D-R 匹配的决策。为 KCH 设计的模型对 3 个月(CCR-曲线下面积 [AUC]=0.94;MS-AUC=0.94)和 12 个月(CCR-AUC=0.78;MS-AUC=0.82)的预测能力均非常出色,比其他已知评分(如终末期肝病模型和风险平衡)的最佳评分高近 15%。此外,这些结果改善了多中心 MADR-E 数据库中之前报告的结果。总之,在其他医疗保健系统中,ANN 用于 LT 的 D-R 匹配可实现出色的预测能力,支持这些工具的验证。它应被视为迄今为止用于管理候补名单的最先进、客观和有用的工具。肝脏移植 24 192-203 2018 AASLD。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验