Suppr超能文献

在人类中,有丝分裂检查点的滑脱是在存在活跃检查点的情况下通过细胞周期蛋白B的降解而发生的。

Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint.

作者信息

Brito Daniela A, Rieder Conly L

机构信息

Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York 12222, USA.

出版信息

Curr Biol. 2006 Jun 20;16(12):1194-200. doi: 10.1016/j.cub.2006.04.043.

Abstract

In the presence of unattached/weakly attached kinetochores, the spindle assembly checkpoint (SAC) delays exit from mitosis by preventing the anaphase-promoting complex (APC)-mediated proteolysis of cyclin B, a regulatory subunit of cyclin-dependent kinase 1 (Cdk1). Like all checkpoints, the SAC does not arrest cells permanently, and escape from mitosis in the presence of an unsatisfied SAC requires that cyclin B/Cdk1 activity be inhibited. In yeast , and likely Drosophila, this occurs through an "adaptation" process involving an inhibitory phosphorylation on Cdk1 and/or activation of a cyclin-dependent kinase inhibitor (Cdki). The mechanism that allows vertebrate cells to escape mitosis when the SAC cannot be satisfied is unknown. To explore this issue, we conducted fluorescence microscopy studies on rat kangaroo (PtK) and human (RPE1) cells dividing in the presence of nocodazole. We find that in the absence of microtubules (MTs), escape from mitosis occurs in the presence of an active SAC and requires cyclin B destruction. We also find that cyclin B is progressively destroyed during the block by a proteasome-dependent mechanism. Thus, vertebrate cells do not adapt to the SAC. Rather, our data suggest that in normal cells, the SAC cannot prevent a slow but continuous degradation of cyclin B that ultimately drives the cell out of mitosis.

摘要

在存在未附着/弱附着动粒的情况下,纺锤体组装检查点(SAC)通过阻止后期促进复合物(APC)介导的细胞周期蛋白B(细胞周期蛋白依赖性激酶1(Cdk1)的调节亚基)的蛋白水解来延迟有丝分裂的退出。与所有检查点一样,SAC不会永久阻滞细胞,并且在SAC未得到满足的情况下从有丝分裂中逃逸需要抑制细胞周期蛋白B/Cdk1的活性。在酵母以及可能在果蝇中,这是通过一个“适应”过程发生的,该过程涉及Cdk1上的抑制性磷酸化和/或细胞周期蛋白依赖性激酶抑制剂(Cdki)的激活。当SAC无法得到满足时,脊椎动物细胞从有丝分裂中逃逸的机制尚不清楚。为了探究这个问题,我们对在诺考达唑存在下分裂的大鼠袋鼠(PtK)细胞和人类(RPE1)细胞进行了荧光显微镜研究。我们发现,在没有微管(MTs)的情况下,在活跃的SAC存在时会发生从有丝分裂中逃逸,并且这需要细胞周期蛋白B的降解。我们还发现,在阻滞期间细胞周期蛋白B通过蛋白酶体依赖性机制逐渐被降解。因此,脊椎动物细胞不会适应SAC。相反,我们的数据表明,在正常细胞中,SAC无法阻止细胞周期蛋白B的缓慢但持续的降解,而这种降解最终会驱使细胞退出有丝分裂。

相似文献

2
p31(comet) acts to ensure timely spindle checkpoint silencing subsequent to kinetochore attachment.
Mol Biol Cell. 2011 Nov;22(22):4236-46. doi: 10.1091/mbc.E11-03-0216. Epub 2011 Sep 30.
4
Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1.
FEBS Lett. 2019 Oct;593(20):2889-2907. doi: 10.1002/1873-3468.13591. Epub 2019 Sep 13.
5
Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint.
Cell. 2001 Jul 13;106(1):83-93. doi: 10.1016/s0092-8674(01)00410-x.
6
Inhibition of CDK7 bypasses spindle assembly checkpoint via premature cyclin B degradation during oocyte meiosis.
Biochim Biophys Acta. 2016 Dec;1863(12):2993-3000. doi: 10.1016/j.bbamcr.2016.09.020.
7
Cells satisfy the mitotic checkpoint in Taxol, and do so faster in concentrations that stabilize syntelic attachments.
J Cell Biol. 2009 Sep 7;186(5):675-84. doi: 10.1083/jcb.200906150. Epub 2009 Aug 31.
8
Orderly inactivation of the key checkpoint protein mitotic arrest deficient 2 (MAD2) during mitotic progression.
J Biol Chem. 2011 Apr 15;286(15):13052-9. doi: 10.1074/jbc.M110.201897. Epub 2011 Feb 18.
9
APC/C- and Mad2-mediated degradation of Cdc20 during spindle checkpoint activation.
Cell Cycle. 2009 Jan 1;8(1):167-71. doi: 10.4161/cc.8.1.7606. Epub 2009 Jan 11.

引用本文的文献

2
The Effect of Gene Knockout on Heat Shock-Induced Polyploidization in Loach ().
Life (Basel). 2025 Aug 2;15(8):1223. doi: 10.3390/life15081223.
3
G-quadruplex stabilization induces DNA breaks in pericentromeric repetitive DNA sequences in B lymphocytes.
Proc Natl Acad Sci U S A. 2025 Aug 26;122(34):e2506939122. doi: 10.1073/pnas.2506939122. Epub 2025 Aug 20.
4
Plasticity of mitotic cyclins in promoting the G2-M transition.
J Cell Biol. 2025 Jun 2;224(6). doi: 10.1083/jcb.202409219. Epub 2025 Apr 9.
5
Resistance to antibody-drug conjugates: A review.
Acta Pharm Sin B. 2025 Feb;15(2):737-756. doi: 10.1016/j.apsb.2024.12.036. Epub 2024 Dec 31.
6
Tetraploidy in normal tissues and diseases: mechanisms and consequences.
Chromosoma. 2025 Mar 21;134(1):3. doi: 10.1007/s00412-025-00829-1.
7
lncreased risk of slippage upon disengagement of the mitotic checkpoint.
PLoS Comput Biol. 2025 Mar 19;21(3):e1012879. doi: 10.1371/journal.pcbi.1012879. eCollection 2025 Mar.
8
Role of spindle assembly checkpoint proteins in gametogenesis and embryogenesis.
Front Cell Dev Biol. 2025 Jan 22;12:1491394. doi: 10.3389/fcell.2024.1491394. eCollection 2024.
9
Kojic Acid Derivative as an Antimitotic Agent That Selectively Kills Tumour Cells.
Pharmaceuticals (Basel). 2024 Dec 25;18(1):11. doi: 10.3390/ph18010011.
10
IGF2BP1 promotes multiple myeloma with chromosome 1q gain via increasing CDC5L expression in an mA-dependent manner.
Genes Dis. 2024 Jan 17;12(1):101214. doi: 10.1016/j.gendis.2024.101214. eCollection 2025 Jan.

本文引用的文献

1
Anaphase-promoting complex/cyclosome controls the stability of TPX2 during mitotic exit.
Mol Cell Biol. 2005 Dec;25(23):10516-27. doi: 10.1128/MCB.25.23.10516-10527.2005.
2
Caspase-mediated specific cleavage of BubR1 is a determinant of mitotic progression.
Mol Cell Biol. 2005 Nov;25(21):9232-48. doi: 10.1128/MCB.25.21.9232-9248.2005.
7
Fission yeast Clp1p phosphatase affects G2/M transition and mitotic exit through Cdc25p inactivation.
EMBO J. 2004 Feb 25;23(4):919-29. doi: 10.1038/sj.emboj.7600103. Epub 2004 Feb 12.
8
Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency.
Cancer Res. 2004 Jan 15;64(2):440-5. doi: 10.1158/0008-5472.can-03-3119.
9
Cell cycle-regulated recognition of the destruction box of cyclin B by the APC/C in Xenopus egg extracts.
Mol Cell. 2004 Jan 16;13(1):137-47. doi: 10.1016/s1097-2765(03)00480-5.
10
Dual roles of human BubR1, a mitotic checkpoint kinase, in the monitoring of chromosomal instability.
Cancer Cell. 2003 Dec;4(6):483-97. doi: 10.1016/s1535-6108(03)00302-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验