Peisach J, Blumberg W E, Rachmilewitz E A
Biochim Biophys Acta. 1975 Jun 26;393(2):404-18. doi: 10.1016/0005-2795(75)90069-0.
Interaction of acetylphenylhydrazine with oxyhemoglobin A in a hemolysate or in intact red cells resulted in the formation of ferrihemochromes as shown by a characteristic optical spectrum. The same optical spectrum was observed in a suspension of red cell ghosts containing numerous Heinz bodies. Electron paramagnetic resonance of actylphenylhydrazine-incubated red cells disclosed the presence of previously identified reversible ferrihemochromes, which can be reduced to functional hemoglobin, and irreversible ferrihemochromes, which cannot be reduced to functional hemoglobin. (Ferrihemochromes are defined as low spin forms of ferric hemoglobin having heme ligands endogenous to the protein structure). In contrast, only irreversible ferrihemochromes could be observed in ghosts containing Heinz bodies. In addition both optical and magnetic features of sulfhemoglobin were observed in an acetylphenylhydrazine-treated red cell hemolysate. Similar optical features are produced by the interaction of aromatic nitrogen-containg reductants with purified oxyhemoglobin in the presence of (NH4)2S. This reaction is not effected by the presence of catalase, suggesting that H2O2 is not an intermediate of the reaction. It is concluded that the mechanism of action of acetylphenylhydrazine with oxyhemoglobin is two-fold, ultimate reduction to high spin ferric hemoglobin followed by ferrihemochrome formation. Thus it appears that the pathway of denaturation of hemolytic anemias and thalassemia or induced by chemical reagents, entails a common route involving the formation of ferric hemoglobin by a reductive mechanism, followed by reversible ferrihemochromes, irreversible ferrihemochromes, and ultimately, precipitation.