Baeurle Stephan A, Efimov Garii V, Nogovitsin Evgenij A
Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93053 Regensburg, Germany.
J Chem Phys. 2006 Jun 14;124(22):224110. doi: 10.1063/1.2204913.
A significant amount of many-body problems of quantum or classical equilibrium statistical mechanics are conveniently treated at fixed temperature and system size. In this paper, we present a new functional integral approach for solving canonical ensemble problems over the entire coupling range, relying on the method of Gaussian equivalent representation of Efimov and Ganbold. We demonstrate its suitability and competitiveness for performing approximate calculations of thermodynamic and structural quantities on the example of a repulsive potential model, widely used in soft matter theory.
量子或经典平衡统计力学中的大量多体问题在固定温度和系统规模下能得到方便的处理。在本文中,我们基于叶菲莫夫和甘博尔德的高斯等效表示方法,提出了一种新的泛函积分方法,用于求解整个耦合范围内的正则系综问题。我们以软物质理论中广泛使用的排斥势模型为例,证明了该方法在进行热力学和结构量的近似计算方面的适用性和竞争力。