Suppr超能文献

由于有利的分子翻滚,超高场(900兆赫)下寡糖的核磁共振谱具有比预期更好的分辨率。

NMR spectra of oligosaccharides at ultra-high field (900 MHz) have better resolution than expected due to favourable molecular tumbling.

作者信息

Blundell Charles D, Reed Michelle A C, Overduin Michael, Almond Andrew

机构信息

Faculty of Life Sciences, University of Manchester, Manchester Interdisciplinary Biocentre, Princess Street, Manchester M1 7ND, UK.

出版信息

Carbohydr Res. 2006 Sep 4;341(12):1985-91. doi: 10.1016/j.carres.2006.05.017. Epub 2006 Jun 19.

Abstract

Nuclear magnetic resonance (NMR) remains the most promising technique for acquiring atomic-resolution information in complex carbohydrates. Significant obstacles to the acquisition of such data are the poor chemical-shift dispersion and artifacts resultant from their degenerate chemical structures. The recent development of ultra-high-field NMR (at 900 MHz and beyond) gives new potential to overcome these problems, as we demonstrate on a hexasaccharide of the highly repetitive glycosaminoglycan hyaluronan. At 900 MHz, the expected increase in spectral dispersion due to higher resonance frequencies and reduction in strong coupling-associated distortions are observed. In addition, the fortuitous molecular tumbling rate of oligosaccharides results in longer T2-values that further significantly enhances resolution, an effect not available to proteins. Combined, the resolution enhancement can be as much as twofold relative to 600 MHz, allowing all 1H-resonances in the hexasaccharide to be unambiguously assigned using standard natural-abundance experiments. The use of ultra-high-field spectrometers is clearly advantageous and promises a new and exciting era in carbohydrate structural biology.

摘要

核磁共振(NMR)仍然是获取复杂碳水化合物原子分辨率信息最具前景的技术。获取此类数据的重大障碍是化学位移分散性差以及由其简并化学结构产生的伪影。超高场NMR(900 MHz及以上)的最新发展为克服这些问题带来了新的可能性,正如我们在高度重复的糖胺聚糖透明质酸的六糖上所展示的那样。在900 MHz时,可以观察到由于更高的共振频率导致的光谱分散性预期增加以及强耦合相关畸变的减少。此外,寡糖偶然的分子翻滚速率导致更长的T2值,这进一步显著提高了分辨率,这是蛋白质所没有的效果。综合起来,分辨率提高相对于600 MHz可达两倍之多,使得使用标准天然丰度实验能够明确归属六糖中的所有1H共振。使用超高场光谱仪显然具有优势,并有望在碳水化合物结构生物学领域开启一个新的、令人兴奋的时代。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d6e/2147997/dfea86116d34/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验