Meyer-Lindenberg A, Nichols T, Callicott J H, Ding J, Kolachana B, Buckholtz J, Mattay V S, Egan M, Weinberger D R
Unit for Systems Neuroscience in Psychiatry, National Institute of Mental Health, NIH, DHHS, Bethesda, MD 20892-1257, USA.
Mol Psychiatry. 2006 Sep;11(9):867-77, 797. doi: 10.1038/sj.mp.4001860. Epub 2006 Jun 20.
Catechol-O-methyltransferase (COMT) has been shown to be critical for prefrontal dopamine flux, prefrontal cortex-dependent cognition and activation. Several potentially functional variants in the gene have been identified, but considerable controversy exists regarding the contribution of individual alleles and haplotypes to risk for schizophrenia, partly because clinical phenotypes are ill-defined and preclinical studies are limited by lack of adequate models. Here, we propose a neuroimaging approach to overcome these limitations by characterizing the functional impact of ambiguous haplotypes on a neural system-level intermediate phenotype in humans. Studying 126 healthy control subjects during a working-memory paradigm, we find that a previously described risk variant in a functional Val158Met (rs4680) polymorphism interacts with a P2 promoter region SNP (rs2097603) and an SNP in the 3' region (rs165599) in predicting inefficient prefrontal working memory response. We report evidence that the nonlinear response of prefrontal neurons to dopaminergic stimulation is a neural mechanism underlying these nonadditive genetic effects. This work provides an in vivo approach to functional validation in brain of the biological impact of complex genetic variations within a gene that may be critical for its clinical association.
儿茶酚-O-甲基转移酶(COMT)已被证明对前额叶多巴胺通量、前额叶皮质依赖的认知和激活至关重要。该基因中已鉴定出几种潜在的功能性变体,但关于单个等位基因和单倍型对精神分裂症风险的贡献存在相当大的争议,部分原因是临床表型定义不明确,且临床前研究因缺乏适当模型而受到限制。在此,我们提出一种神经影像学方法,通过表征模糊单倍型对人类神经系统水平中间表型的功能影响来克服这些限制。在工作记忆范式中对126名健康对照受试者进行研究时,我们发现先前描述的功能性Val158Met(rs4680)多态性中的风险变体与P2启动子区域单核苷酸多态性(rs2097603)以及3'区域中的一个单核苷酸多态性(rs165599)相互作用,可预测前额叶工作记忆反应效率低下。我们报告了证据表明前额叶神经元对多巴胺能刺激的非线性反应是这些非加性遗传效应的神经机制。这项工作提供了一种体内方法,用于在大脑中对基因内复杂遗传变异的生物学影响进行功能验证,而这些变异可能对其临床关联至关重要。