Lise Stefano, Walker-Taylor Alice, Jones David T
Department of Biochemistry and Molecular Biology, University College London, UK.
BMC Bioinformatics. 2006 Jun 21;7:310. doi: 10.1186/1471-2105-7-310.
Many biological processes involve the physical interaction between protein domains. Understanding these functional associations requires knowledge of the molecular structure. Experimental investigations though present considerable difficulties and there is therefore a need for accurate and reliable computational methods. In this paper we present a novel method that seeks to dock protein domains using a contact map representation. Rather than providing a full three dimensional model of the complex, the method predicts contacting residues across the interface. We use a scoring function that combines structural, physicochemical and evolutionary information, where each potential residue contact is assigned a value according to the scoring function and the hypothesis is that the real configuration of contacts is the one that maximizes the score. The search is performed with a simulated annealing algorithm directly in contact space.
We have tested the method on interacting domain pairs that are part of the same protein (intra-molecular domains). We show that it correctly predicts some contacts and that predicted residues tend to be significantly closer to each other than other pairs of residues in the same domains. Moreover we find that predicted contacts can often discriminate the best model (or the native structure, if present) among a set of optimal solutions generated by a standard docking procedure.
Contact docking appears feasible and able to complement other computational methods for the prediction of protein-protein interactions. With respect to more standard docking algorithms it might be more suitable to handle protein conformational changes and to predict complexes starting from protein models.
许多生物过程涉及蛋白质结构域之间的物理相互作用。理解这些功能关联需要分子结构知识。尽管实验研究存在相当大的困难,因此需要准确可靠的计算方法。在本文中,我们提出了一种新颖的方法,该方法试图使用接触图表示法对接蛋白质结构域。该方法不是提供复合物的完整三维模型,而是预测跨界面的接触残基。我们使用一种结合了结构、物理化学和进化信息的评分函数,根据该评分函数为每个潜在的残基接触分配一个值,假设实际的接触构型是使分数最大化的构型。搜索直接在接触空间中使用模拟退火算法进行。
我们在属于同一蛋白质的相互作用结构域对(分子内结构域)上测试了该方法。我们表明它能正确预测一些接触,并且预测的残基往往比同一结构域中的其他残基对彼此更接近。此外,我们发现预测的接触通常可以在标准对接程序生成的一组最优解中区分出最佳模型(或天然结构,如果存在的话)。
接触对接似乎是可行的,并且能够补充其他用于预测蛋白质 - 蛋白质相互作用的计算方法。相对于更标准的对接算法,它可能更适合处理蛋白质构象变化,并从蛋白质模型开始预测复合物。