Suppr超能文献

利用预测的蛋白质表面的一级结构预测蛋白质-蛋白质相互作用。

Predicting the protein-protein interactions using primary structures with predicted protein surface.

机构信息

Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.

出版信息

BMC Bioinformatics. 2010 Jan 18;11 Suppl 1(Suppl 1):S3. doi: 10.1186/1471-2105-11-S1-S3.

Abstract

BACKGROUND

Many biological functions involve various protein-protein interactions (PPIs). Elucidating such interactions is crucial for understanding general principles of cellular systems. Previous studies have shown the potential of predicting PPIs based on only sequence information. Compared to approaches that require other auxiliary information, these sequence-based approaches can be applied to a broader range of applications.

RESULTS

This study presents a novel sequence-based method based on the assumption that protein-protein interactions are more related to amino acids at the surface than those at the core. The present method considers surface information and maintains the advantage of relying on only sequence data by including an accessible surface area (ASA) predictor recently proposed by the authors. This study also reports the experiments conducted to evaluate a) the performance of PPI prediction achieved by including the predicted surface and b) the quality of the predicted surface in comparison with the surface obtained from structures. The experimental results show that surface information helps to predict interacting protein pairs. Furthermore, the prediction performance achieved by using the surface estimated with the ASA predictor is close to that using the surface obtained from protein structures.

CONCLUSION

This work presents a sequence-based method that takes into account surface information for predicting PPIs. The proposed procedure of surface identification improves the prediction performance with an F-measure of 5.1%. The extracted surfaces are also valuable in other biomedical applications that require similar information.

摘要

背景

许多生物功能涉及各种蛋白质-蛋白质相互作用(PPIs)。阐明这些相互作用对于理解细胞系统的一般原理至关重要。先前的研究表明,仅基于序列信息预测 PPIs 具有潜力。与需要其他辅助信息的方法相比,这些基于序列的方法可以应用于更广泛的应用。

结果

本研究提出了一种新的基于序列的方法,该方法基于这样的假设,即蛋白质-蛋白质相互作用与表面上的氨基酸比核心上的氨基酸更相关。本方法考虑了表面信息,并通过包含作者最近提出的可及表面积(ASA)预测器,保持了仅依赖序列数据的优势。本研究还报告了评估以下内容的实验:a)通过包含预测表面来预测 PPI 的性能,以及 b)与从结构中获得的表面相比,预测表面的质量。实验结果表明,表面信息有助于预测相互作用的蛋白质对。此外,使用 ASA 预测器估计的表面进行预测的性能接近使用从蛋白质结构获得的表面进行预测的性能。

结论

本工作提出了一种基于序列的方法,该方法考虑了用于预测 PPIs 的表面信息。表面识别的提议程序可将 F 度量提高到 5.1%,从而提高预测性能。提取的表面在需要类似信息的其他生物医学应用中也很有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fd/3009501/097c91d613ed/1471-2105-11-S1-S3-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验