Suppr超能文献

使用混合效应生物统计学方法对纵向双胞胎数据进行潜在曲线分析。

Latent curve analyses of longitudinal twin data using a mixed-effects biometric approach.

作者信息

McArdle John J

机构信息

Department of Psychology, University of Southern California, Los Angeles, 90089, USA.

出版信息

Twin Res Hum Genet. 2006 Jun;9(3):343-59. doi: 10.1375/183242706777591263.

Abstract

In a recent article McArdle and Prescott (2005) showed how simultaneous estimation of the biometric parameters can be easily programmed using current mixed-effects modeling programs (e.g., SAS PROC MIXED). This article extends these concepts to deal with mixed-effect modeling of longitudinal twin data. The biometric basis of a polynomial growth curve model was used by Vandenberg and Falkner (1965) and this general class of longitudinal models was represented in structural equation form as a latent curve model by McArdle (1986). The new mixed-effects modeling approach presented here makes it easy to analyze longitudinal growth-decline models with biometric components based on standard maximum likelihood estimation and standard indices of goodness-of-fit (i.e., chi(2), df, epsilon(a)). The validity of this approach is first checked by the creation of simulated longitudinal twin data followed by numerical analysis using different computer programs (i.e., Mplus, Mx, MIXED, NLMIXED). The practical utility of this approach is examined through the application of these techniques to real longitudinal data from the Swedish Adoption/Twin Study of Aging (Pedersen et al., 2002). This approach generally allows researchers to explore the genetic and nongenetic basis of the latent status and latent changes in longitudinal scores in the absence of measurement error. These results show the mixed-effects approach easily accounts for complex patterns of incomplete longitudinal or twin pair data. The results also show this approach easily allows a variety of complex latent basis curves, such as the use of age-at-testing instead of wave-of-testing. Natural extensions of this mixed-effects longitudinal approach include more intensive studies of the available data, the analysis of categorical longitudinal data, and mixtures of latent growth-survival/frailty models.

摘要

在最近的一篇文章中,麦卡德尔和普雷斯科特(2005年)展示了如何使用当前的混合效应建模程序(如SAS PROC MIXED)轻松地对生物统计学参数进行同时估计。本文将这些概念扩展到处理纵向双胞胎数据的混合效应建模。范登伯格和法尔克纳(1965年)使用了多项式生长曲线模型的生物统计学基础,而麦卡德尔(1986年)将这类一般的纵向模型以潜在曲线模型的形式表示为结构方程形式。这里提出的新的混合效应建模方法使得基于标准最大似然估计和标准拟合优度指标(即卡方(2)、自由度、epsilon(a))来分析具有生物统计学成分的纵向增长-衰退模型变得容易。首先通过创建模拟纵向双胞胎数据,然后使用不同的计算机程序(即Mplus、Mx、MIXED、NLMIXED)进行数值分析,来检验这种方法的有效性。通过将这些技术应用于瑞典老年收养/双胞胎研究(佩德森等人,2002年)的实际纵向数据,来检验这种方法的实际效用。这种方法通常允许研究人员在没有测量误差的情况下探索纵向分数中潜在状态和潜在变化的遗传和非遗传基础。这些结果表明,混合效应方法很容易处理不完整纵向或双胞胎对数据的复杂模式。结果还表明,这种方法很容易允许使用各种复杂的潜在基础曲线,例如使用测试时的年龄而不是测试波次。这种混合效应纵向方法的自然扩展包括对可用数据进行更深入的研究、对分类纵向数据的分析以及潜在生长-生存/脆弱模型的混合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验