Wienke Andreas, Lichtenstein Paul, Yashin Anatoli I
Max Planck Institute for Demographic Research, Rostock, Germany.
Biometrics. 2003 Dec;59(4):1178-83; discussion 1184-5. doi: 10.1111/j.0006-341x.2003.00135.x.
We suggest a cure-mixture model to analyze bivariate time-to-event data, as motivated by the article of Chatterjee and Shih (2001, Biometrics 57, 779-786), but with a simpler estimation procedure and the correlated gamma-frailty model instead of the shared gamma-frailty model. This approach allows us to deal with left-truncated and right-censored lifetime data, and accounts for heterogeneity, as well as for an insusceptible (cure) fraction in the study population. We perform a simulation study to evaluate the properties of the estimates in the proposed model and apply it to breast cancer incidence data for 5857 Swedish female monozygotic and dizygotic twin pairs from the so-called old cohort of the Swedish Twin Registry. This model is used to estimate the size of the susceptible fraction and the correlation between the frailties of the twin partners. Possible extensions, advantages, and limitations of the proposed method are discussed.
受Chatterjee和Shih(2001年,《生物统计学》57卷,779 - 786页)文章的启发,我们提出一种治愈 - 混合模型来分析双变量事件发生时间数据,但采用了更简单的估计程序以及相关伽马脆弱模型而非共享伽马脆弱模型。这种方法使我们能够处理左截断和右删失的生存时间数据,并考虑到异质性以及研究人群中不易感(治愈)部分。我们进行了一项模拟研究,以评估所提出模型中估计量的性质,并将其应用于来自瑞典双胞胎登记处所谓旧队列的5857对瑞典女性同卵和异卵双胞胎的乳腺癌发病率数据。该模型用于估计易感部分的大小以及双胞胎伙伴脆弱性之间的相关性。文中还讨论了所提出方法可能的扩展、优点和局限性。