Markon Kristian E
Department of Psychology, University of Minnesota, Minneapolis, 55455, USA.
Twin Res Hum Genet. 2006 Jun;9(3):360-6. doi: 10.1375/183242706777591245.
Nonnormal phenotypic distributions introduce significant problems in the estimation and selection of genetic models. Here, a semiparametric maximum likelihood approach to analyzing nonnormal phenotypes is described. In this approach, distributions are explicitly modeled together with genetic and environmental effects. Distributional parameters are introduced through mixture constraints, where the distribution of effects are discretized and freely estimated rather than assumed to be normal. Semiparametric maximum likelihood estimation can be used with a variety of genetic models, can be extended to a variety of pedigree structures, and has various advantages over other approaches to modeling nonnormal data.
非正态表型分布在遗传模型的估计和选择中带来了重大问题。本文描述了一种用于分析非正态表型的半参数最大似然方法。在这种方法中,分布与遗传和环境效应一起被明确建模。分布参数通过混合约束引入,其中效应的分布被离散化并自由估计,而不是假定为正态分布。半参数最大似然估计可用于多种遗传模型,可扩展到多种家系结构,并且相对于其他用于非正态数据建模的方法具有多种优势。