Suppr超能文献

单变量人类双胞胎数据模型中最大似然估计的近似解。

Approximate solutions for the maximum-likelihood estimates in models of univariate human twin data.

作者信息

Wijesiri U W, Williams C J

机构信息

Department of Mathematics and Statistics, University of Idaho, Moscow 83843, USA.

出版信息

Behav Genet. 1995 May;25(3):211-6. doi: 10.1007/BF02197179.

Abstract

We present numerical results concerning the accuracy of approximate maximum-likelihood estimators of variance components for several models of univariate human twin data. The approximations are obtained via a spectral decomposition of the twin model covariance matrix. The results apply to likelihood functions for univariate twin data based on either the Wishart distribution or the bivariate normal distribution. For sample sizes of 100 twin pairs for each zygosity group, if the difference of the traces of the sample covariance matrices is 10% or less of the sum of the traces, the approximate solutions can be used as the maximum-likelihood estimators for some models.

摘要

我们给出了关于单变量人类双胞胎数据的几种模型中方差分量近似最大似然估计量准确性的数值结果。这些近似值是通过双胞胎模型协方差矩阵的谱分解得到的。结果适用于基于威沙特分布或二元正态分布的单变量双胞胎数据的似然函数。对于每个同卵性组有100对双胞胎的样本量,如果样本协方差矩阵迹的差值是迹之和的10%或更少,那么对于某些模型,近似解可以用作最大似然估计量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验