van den Berg Stéphanie M, Beem Leo, Boomsma Dorret I
Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands,
Twin Res Hum Genet. 2006 Jun;9(3):334-42. doi: 10.1375/183242706777591399.
Maximum likelihood estimation techniques are widely used in twin and family studies, but soon reach computational boundaries when applied to highly complex models (e.g., models including gene-by-environment interaction and gene-environment correlation, item response theory measurement models, repeated measures, longitudinal structures, extended pedigrees). Markov Chain Monte Carlo (MCMC) algorithms are very well suited to fit complex models with hierarchically structured data. This article introduces the key concepts of Bayesian inference and MCMC parameter estimation and provides a number of scripts describing relatively simple models to be estimated by the freely obtainable BUGS software. In addition, inference using BUGS is illustrated using a data set on follicle-stimulating hormone and luteinizing hormone levels with repeated measures. The examples provided can serve as stepping stones for more complicated models, tailored to the specific needs of the individual researcher.
最大似然估计技术在双生子和家系研究中被广泛应用,但在应用于高度复杂的模型(例如,包含基因-环境交互作用和基因-环境相关性的模型、项目反应理论测量模型、重复测量、纵向结构、扩展家系)时很快就会达到计算极限。马尔可夫链蒙特卡罗(MCMC)算法非常适合拟合具有层次结构数据的复杂模型。本文介绍了贝叶斯推断和MCMC参数估计的关键概念,并提供了一些脚本,描述了可通过免费获取的BUGS软件估计的相对简单的模型。此外,使用一个关于促卵泡激素和促黄体生成素水平的重复测量数据集说明了使用BUGS进行的推断。所提供的示例可作为为满足个别研究人员的特定需求而构建的更复杂模型的垫脚石。