Suppr超能文献

使用基于相干性的谱-空间滤波器从脑电记录中预测刺激特征。

Using Coherence-based spectro-spatial filters for stimulus features prediction from electro-corticographic recordings.

机构信息

Auditory Language Group, University of Geneva, Geneva, Switzerland.

BSPAI Lab, Universidad del Norte, Barranquilla, Colombia.

出版信息

Sci Rep. 2020 May 6;10(1):7637. doi: 10.1038/s41598-020-63303-1.

Abstract

The traditional approach in neuroscience relies on encoding models where brain responses are related to different stimuli in order to establish dependencies. In decoding tasks, on the contrary, brain responses are used to predict the stimuli, and traditionally, the signals are assumed stationary within trials, which is rarely the case for natural stimuli. We hypothesize that a decoding model assuming each experimental trial as a realization of a random process more likely reflects the statistical properties of the undergoing process compared to the assumption of stationarity. Here, we propose a Coherence-based spectro-spatial filter that allows for reconstructing stimulus features from brain signal's features. The proposed method extracts common patterns between features of the brain signals and the stimuli that produced them. These patterns, originating from different recording electrodes are combined, forming a spatial filter that produces a unified prediction of the presented stimulus. This approach takes into account frequency, phase, and spatial distribution of brain features, hence avoiding the need to predefine specific frequency bands of interest or phase relationships between stimulus and brain responses manually. Furthermore, the model does not require the tuning of hyper-parameters, reducing significantly the computational load attached to it. Using three different cognitive tasks (motor movements, speech perception, and speech production), we show that the proposed method consistently improves stimulus feature predictions in terms of correlation (group averages of 0.74 for motor movements, 0.84 for speech perception, and 0.74 for speech production) in comparison with other methods based on regularized multivariate regression, probabilistic graphical models and artificial neural networks. Furthermore, the model parameters revealed those anatomical regions and spectral components that were discriminant in the different cognitive tasks. This novel method does not only provide a useful tool to address fundamental neuroscience questions, but could also be applied to neuroprosthetics.

摘要

传统的神经科学方法依赖于编码模型,通过将大脑反应与不同的刺激相关联来建立依赖关系。相反,在解码任务中,大脑反应被用于预测刺激,传统上,信号被假设在试验内是静止的,而对于自然刺激来说,这种情况很少发生。我们假设,一个假设每个实验试验都是随机过程的实现的解码模型,与假设静止性相比,更有可能反映正在进行的过程的统计特性。在这里,我们提出了一种基于相干性的谱-空域滤波器,该滤波器允许从脑信号的特征中重建刺激特征。所提出的方法提取了脑信号特征和产生它们的刺激特征之间的共同模式。这些源自不同记录电极的模式被组合起来,形成一个空间滤波器,对呈现的刺激产生统一的预测。这种方法考虑了大脑特征的频率、相位和空间分布,因此避免了手动预定义特定的感兴趣频带或刺激与大脑反应之间的相位关系的需要。此外,该模型不需要调整超参数,大大降低了与之相关的计算负担。使用三种不同的认知任务(运动、语音感知和言语产生),我们表明,与基于正则化多元回归、概率图形模型和人工神经网络的其他方法相比,该方法在相关性方面一致地提高了刺激特征预测(运动的组平均值为 0.74,语音感知为 0.84,言语产生为 0.74)。此外,该模型的参数揭示了在不同认知任务中具有区分性的那些解剖区域和频谱成分。这种新方法不仅提供了一个解决基础神经科学问题的有用工具,也可以应用于神经假肢。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93c3/7203138/8dd4c8daada0/41598_2020_63303_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验