Ma Haiching, Horiuchi Kurumi Y
Reaction Biology Corporation, One Great Valley Parkway, Suite 8, Malvern, PA 19355, USA.
Drug Discov Today. 2006 Jul;11(13-14):661-8. doi: 10.1016/j.drudis.2006.05.002.
HTS with microtiter plates has been the major tool used in the pharmaceutical industry to explore chemical diversity space and to identify active compounds and pharmacophores for specific biological targets. However, HTS faces a daunting challenge regarding the fast-growing numbers of drug targets arising from genomic and proteomic research, and large chemical libraries generated from high-throughput synthesis. There is an urgent need to find new ways to profile the activity of large numbers of chemicals against hundreds of biological targets in a fast, low-cost fashion. Chemical microarray can rise to this challenge because it has the capability of identifying and evaluating small molecules as potential therapeutic reagents. During the past few years, chemical microarray technology, with different surface chemistries and activation strategies, has generated many successes in the evaluation of chemical-protein interactions, enzyme activity inhibition, target identification, signal pathway elucidation and cell-based functional analysis. The success of chemical microarray technology will provide unprecedented possibilities and capabilities for parallel functional analysis of tremendous amounts of chemical compounds.
使用微量滴定板的高通量筛选一直是制药行业用于探索化学多样性空间以及识别针对特定生物靶点的活性化合物和药效团的主要工具。然而,面对基因组学和蛋白质组学研究中快速增长的药物靶点数量以及高通量合成产生的大型化学文库,高通量筛选面临着艰巨的挑战。迫切需要找到新方法,以快速、低成本的方式对大量化学物质针对数百种生物靶点的活性进行分析。化学微阵列能够应对这一挑战,因为它有能力识别和评估作为潜在治疗试剂的小分子。在过去几年中,具有不同表面化学和活化策略的化学微阵列技术在评估化学-蛋白质相互作用、酶活性抑制、靶点识别、信号通路阐明以及基于细胞的功能分析方面取得了诸多成功。化学微阵列技术的成功将为大量化合物的平行功能分析提供前所未有的可能性和能力。