Brunet E, Derrida B, Mueller A H, Munier S
Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 2):056126. doi: 10.1103/PhysRevE.73.056126. Epub 2006 May 26.
We propose a phenomenological description for the effect of a weak noise on the position of a front described by the Fisher-Kolmogorov-Petrovsky-Piscounov equation or any other traveling-wave equation in the same class. Our scenario is based on four hypotheses on the relevant mechanism for the diffusion of the front. Our parameter-free analytical predictions for the velocity of the front, its diffusion constant and higher cumulants of its position agree with numerical simulations.
我们针对弱噪声对由费希尔 - 柯尔莫哥洛夫 - 彼得罗夫斯基 - 皮斯库诺夫方程或同一类中的任何其他行波方程所描述的前沿位置的影响,提出了一种唯象描述。我们的设想基于关于前沿扩散相关机制的四个假设。我们对前沿速度、其扩散常数及其位置的高阶累积量的无参数解析预测与数值模拟结果相符。