Houchmandzadeh B, Vallade M
CNRS, LIPHY, F-38000 Grenoble, France and Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France.
Phys Rev E. 2017 Jul;96(1-1):012414. doi: 10.1103/PhysRevE.96.012414. Epub 2017 Jul 25.
The propagation of a beneficial mutation in a spatially extended population is usually studied using the phenomenological stochastic Fisher-Kolmogorov-Petrovsky-Piscounov (SFKPP) equation. We derive here an individual-based, stochastic model founded on the spatial Moran process where fluctuations are treated exactly. The mean-field approximation of this model leads to an equation that is different from the phenomenological FKPP equation. At small selection pressure, the front behavior can be mapped into a Brownian motion with drift, the properties of which can be derived from the microscopic parameters of the Moran model. Finally, we generalize the model to take into account dispersal kernels beyond migration to nearest neighbors. We show how the effective population size (which controls the noise amplitude) and the diffusion coefficient can both be computed from the dispersal kernel.
有益突变在空间扩展种群中的传播通常使用现象学随机Fisher-Kolmogorov-Petrovsky-Piscounov(SFKPP)方程进行研究。我们在此推导一个基于个体的随机模型,该模型建立在空间莫兰过程之上,其中波动得到精确处理。该模型的平均场近似导致一个与现象学FKPP方程不同的方程。在小选择压力下,前沿行为可以映射为具有漂移的布朗运动,其性质可以从莫兰模型的微观参数推导出来。最后,我们对模型进行推广,以考虑除迁移到最近邻之外的扩散核。我们展示了有效种群大小(控制噪声幅度)和扩散系数如何都可以从扩散核计算得出。