Crozier S R, Robinson S M, Borland S E, Inskip H M
MRC Epidemiology Resource Centre, University of Southampton, Southampton General Hospital, Southampton, UK.
Eur J Clin Nutr. 2006 Dec;60(12):1391-9. doi: 10.1038/sj.ejcn.1602469. Epub 2006 Jun 28.
Dietary pattern analysis is receiving increasing attention as a means of summarizing the multidimensional nature of dietary data. This research aims to compare principal component analysis (PCA) and cluster analysis using dietary data collected from young women in the UK.
Diet was assessed using a 100-item interviewer-administered food frequency questionnaire. PCA and cluster analysis were used to examine dietary patterns.
Southampton, UK.
A total of 6125 non-pregnant women aged 20-34 years.
PCA identified two important patterns: a 'prudent' diet and a 'high-energy' diet. Cluster analysis defined two clusters, a 'more healthy' and a 'less healthy' cluster. There was a strong association between the prudent diet score and the two clusters, such that the mean prudent diet score in the less healthy cluster was -0.73 standard deviations and in the more healthy cluster was +0.83 standard deviations; the difference in the high-energy diet score between the two clusters was considerably smaller.
Both approaches revealed a similar dietary pattern. The continuous nature of the outcome of PCA was considered to be advantageous compared with the dichotomy identified using cluster analysis.
The study was funded by the Dunhill Medical Trust, the University of Southampton and the Medical Research Council.
作为总结饮食数据多维性质的一种方法,饮食模式分析正受到越来越多的关注。本研究旨在比较使用从英国年轻女性收集的饮食数据进行主成分分析(PCA)和聚类分析的结果。
通过一份由访员管理的包含100个条目的食物频率问卷来评估饮食情况。使用主成分分析和聚类分析来研究饮食模式。
英国南安普顿。
总共6125名年龄在20至34岁之间的未怀孕女性。
主成分分析确定了两种重要模式:“谨慎”饮食模式和“高能量”饮食模式。聚类分析定义了两个类别,即“更健康”类别和“较不健康”类别。谨慎饮食得分与这两个类别之间存在很强的关联,在较不健康类别中谨慎饮食得分的平均值为-0.73个标准差,在更健康类别中为+0.83个标准差;两个类别之间高能量饮食得分的差异要小得多。
两种方法都揭示了相似的饮食模式。与聚类分析所确定的二分法相比,主成分分析结果的连续性被认为具有优势。
该研究由邓希尔医学信托基金、南安普顿大学和医学研究理事会资助。