Suppr超能文献

使用人工神经网络优化急性淋巴细胞白血病和急性髓系白血病样本的分类

Optimizing the classification of acute lymphoblastic leukemia and acute myeloid leukemia samples using artificial neural networks.

作者信息

Zong Nuannuan, Adjouadi Malek, Ayala Melvin

机构信息

Department of Electrical and Computer, Florida International University, 10555 W. Flagler Street, Miami, FL 33174, USA.

出版信息

Biomed Sci Instrum. 2006;42:261-6.

Abstract

Accurate classification of human blood cells plays a decisive role in the diagnosis and treatment of diseases. Artificial Neural Networks (ANN) have been consistently used as a trusted classification tool for this type of analysis. In this study, a new Artificial Neural Network approach is proposed for the multidimensional classification of two of the most common forms of leukemia: Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia (AML), also sometimes called Acute Myelogenous Leukemia. Beckman-Coulter Corporation supplied flow cytometry data of 120 patients that were used in the training and testing phases. The ANN algorithm was thus developed to exploit the different features of the different blood cells provided in an optimized fashion. The goal was to establish a programming tool, supported through this new ANN development, for the identification of normal and abnormal blood samples and provide information to medical doctors in the form of diagnostic references for the specific disease state that is considered for this study. The application of the ANN algorithm produced remarkable classification accuracy results that show a 95% classification accuracy for the normal blood samples and 90% classification accuracy for the abnormal samples even under the ubiquitous problem of overlap.

摘要

人体血细胞的准确分类在疾病的诊断和治疗中起着决定性作用。人工神经网络(ANN)一直被用作这类分析中值得信赖的分类工具。在本研究中,提出了一种新的人工神经网络方法,用于对两种最常见的白血病形式进行多维分类:急性淋巴细胞白血病(ALL)和急性髓细胞白血病(AML),后者有时也称为急性粒细胞白血病。贝克曼库尔特公司提供了120名患者的流式细胞术数据,这些数据用于训练和测试阶段。因此,开发了人工神经网络算法,以优化方式利用不同血细胞的不同特征。目标是建立一个通过这种新的人工神经网络开发支持的编程工具,用于识别正常和异常血液样本,并以针对本研究中所考虑的特定疾病状态的诊断参考形式向医生提供信息。人工神经网络算法的应用产生了显著的分类准确率结果,即使在普遍存在的重叠问题下,正常血液样本的分类准确率也达到了95%,异常样本的分类准确率达到了90%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验