Suppr超能文献

生态毒理基因组学在研究脊椎动物和无脊椎动物内分泌干扰方面的应用。

Application of ecotoxicogenomics for studying endocrine disruption in vertebrates and invertebrates.

作者信息

Iguchi Taisen, Watanabe Hajime, Katsu Yoshinao

机构信息

Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji, Okazaki, Japan.

出版信息

Environ Health Perspect. 2006 Apr;114 Suppl 1(Suppl 1):101-5. doi: 10.1289/ehp.8061.

Abstract

Chemicals released into the environment potentially disrupt the endocrine system in wild animals and humans. Developing organisms are particularly sensitive to estrogenic chemicals. Exposure to estrogens or estrogenic chemicals during critical periods of development induces persistent changes in both reproductive and nonreproductive organs, including persistent molecular alterations. Estrogen-responsive genes and critical developmental windows of various animal species, therefore, need to be identified for investigators to understand the molecular basis of estrogenic activity during embryonic development. For investigators to understand molecular mechanisms of toxicity in various species, toxicogenomics/ecotoxicogenomics, defined as the integration of genomics (transcriptomics, proteomics, metabolomics) into toxicology and ecotoxicology, need to be established as powerful tools for research. As the initial step toward using genomics to examine endocrine-disrupting chemicals, estrogen receptors and other steroid hormone receptors have been cloned in various species, including reptiles, amphibians, and fish, and alterations in the expression of these genes in response to chemicals were investigated. We are identifying estrogen-responsive genes in mouse reproductive tracts using cDNA microarrays and trying to establish microarray systems in the American alligator, roach, medaka, and water fleas (Daphnia magna). It is too early to define common estrogen-responsive genes in various animal species; however, toxicogenomics and ectotoxicogenomics provide powerful tools to help us understand the molecular mechanism of chemical toxicities in various animal species.

摘要

释放到环境中的化学物质可能会扰乱野生动物和人类的内分泌系统。发育中的生物体对雌激素类化学物质尤为敏感。在发育的关键时期接触雌激素或雌激素类化学物质会导致生殖器官和非生殖器官发生持续变化,包括持续的分子改变。因此,为了让研究人员了解胚胎发育过程中雌激素活性的分子基础,需要确定各种动物物种的雌激素反应基因和关键发育窗口。为了让研究人员了解不同物种的毒性分子机制,需要将基因组学(转录组学、蛋白质组学、代谢组学)整合到毒理学和生态毒理学中的毒理基因组学/生态毒理基因组学作为强大的研究工具得以确立。作为利用基因组学研究内分泌干扰化学物质的第一步,雌激素受体和其他类固醇激素受体已在包括爬行动物、两栖动物和鱼类在内的各种物种中被克隆,并研究了这些基因对化学物质反应时表达的变化。我们正在使用cDNA微阵列鉴定小鼠生殖道中的雌激素反应基因,并试图在美国短吻鳄、蟑螂、青鳉和水蚤(大型溞)中建立微阵列系统。现在定义各种动物物种中常见的雌激素反应基因还为时过早;然而,毒理基因组学和生态毒理基因组学提供了强大的工具,帮助我们了解各种动物物种中化学毒性的分子机制。

相似文献

1
Application of ecotoxicogenomics for studying endocrine disruption in vertebrates and invertebrates.
Environ Health Perspect. 2006 Apr;114 Suppl 1(Suppl 1):101-5. doi: 10.1289/ehp.8061.
3
Toxicogenomics and ecotoxicogenomics for studying endocrine disruption and basic biology.
Gen Comp Endocrinol. 2007 Aug-Sep;153(1-3):25-9. doi: 10.1016/j.ygcen.2007.01.013. Epub 2007 Jan 25.
4
Developmental toxicity of estrogenic chemicals on rodents and other species.
Congenit Anom (Kyoto). 2002 Jun;42(2):94-105. doi: 10.1111/j.1741-4520.2002.tb00858.x.
6
Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology.
Aquat Toxicol. 2004 Apr 14;67(2):143-54. doi: 10.1016/j.aquatox.2003.11.011.
7
Sexual dimorphic responses in wildlife exposed to endocrine disrupting chemicals.
Environ Res. 2007 May;104(1):163-73. doi: 10.1016/j.envres.2006.06.002. Epub 2006 Aug 4.
10
Transcriptome profiling in crustaceans as a tool for ecotoxicogenomics: Daphnia magna DNA microarray.
Cell Biol Toxicol. 2008 Dec;24(6):641-7. doi: 10.1007/s10565-008-9108-4. Epub 2008 Oct 28.

引用本文的文献

2
Analysis of the genome-editing activity of microinjected CRISPR/Cas9 ribonucleoprotein complexes in .
MicroPubl Biol. 2024 Oct 30;2024. doi: 10.17912/micropub.biology.001310. eCollection 2024.
3
Occurrence Characteristics and Ecotoxic Effects of Microplastics in Environmental Media: a Mini Review.
Appl Biochem Biotechnol. 2024 Aug;196(8):5484-5507. doi: 10.1007/s12010-023-04832-z. Epub 2023 Dec 30.
4
A systematic review of the evaluation of endocrine-disrupting chemicals in the Japanese medaka () fish.
Front Toxicol. 2023 Nov 27;5:1272368. doi: 10.3389/ftox.2023.1272368. eCollection 2023.
6
Microplastics and nanoplastics: would they affect global biodiversity change?
Environ Sci Pollut Res Int. 2019 Jul;26(19):19997-20002. doi: 10.1007/s11356-019-05414-5. Epub 2019 May 17.
7
Hormonally active phytochemicals and vertebrate evolution.
Evol Appl. 2017 Mar 23;10(5):419-432. doi: 10.1111/eva.12469. eCollection 2017 Jun.
10
Histopathological and estrogen effect of pentachlorophenol on the rare minnow (Gobiocypris rarus).
Fish Physiol Biochem. 2014 Jun;40(3):805-16. doi: 10.1007/s10695-013-9887-2. Epub 2013 Nov 12.

本文引用的文献

1
Endocrine-like Signaling in Cnidarians: Current Understanding and Implications for Ecophysiology.
Integr Comp Biol. 2005 Jan;45(1):201-14. doi: 10.1093/icb/45.1.201.
2
The study of endocrine-disrupting compounds: past approaches and new directions.
Integr Comp Biol. 2005 Jan;45(1):194-200. doi: 10.1093/icb/45.1.194.
3
Non-traditional targets of endocrine disrupting chemicals: the roots of hormone signaling.
Integr Comp Biol. 2005 Jan;45(1):179-88. doi: 10.1093/icb/45.1.179.
4
Molecular cloning of estrogen receptor alpha of the Nile crocodile.
Comp Biochem Physiol A Mol Integr Physiol. 2006 Mar;143(3):340-6. doi: 10.1016/j.cbpa.2005.12.010. Epub 2006 Feb 7.
5
Production of male neonates in Daphnia magna (Cladocera, Crustacea) exposed to juvenile hormones and their analogs.
Chemosphere. 2005 Dec;61(8):1168-74. doi: 10.1016/j.chemosphere.2005.02.075. Epub 2005 Apr 13.
6
Analysis of expressed sequence tags of the water flea Daphnia magna.
Genome. 2005 Aug;48(4):606-9. doi: 10.1139/g05-038.
7
Effects of an androgenic growth promoter 17beta-trenbolone on masculinization of Mosquitofish (Gambusia affinis affinis).
Gen Comp Endocrinol. 2005 Sep 1;143(2):151-60. doi: 10.1016/j.ygcen.2005.03.007. Epub 2005 Apr 13.
8
Development of the mammalian female reproductive tract.
J Biochem. 2005 Jun;137(6):677-83. doi: 10.1093/jb/mvi087.
9
Production of male neonates in four cladoceran species exposed to a juvenile hormone analog, fenoxycarb.
Chemosphere. 2005 Jun;60(1):74-8. doi: 10.1016/j.chemosphere.2004.12.080. Epub 2005 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验