Botan Virgiliu, Schanz Roland, Hamm Peter
Physikalisch-Chemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
J Chem Phys. 2006 Jun 21;124(23):234511. doi: 10.1063/1.2204914.
In a recent paper [R. Schanz et al., J. Chem. Phys. 122, 044509 (2005)], we investigated the IR-driven cis-trans isomerization of HONO in a Kr matrix with the help of femtosecond IR spectroscopy. We found that isomerization occurs on a 20 ps time scale, however, with a cis-->trans quantum yield of only 10% that is significantly below the value reported in the literature (close to 100%). At the same time, we concluded that vibrational energy has not completely dissipated out of the molecule at the maximum delay time we reached in this study (500 ps). In order to verify whether additional, slower reaction channels exist, we extend the study here to delay times up to 100 ns. At a temperature of 32 K, we indeed find an additional isomerization channel on a 2 ns timescale, which increases the total cis-->trans quantum yield to approximately 30%. The trans-->cis quantum yield is approximately 7%. There is still a discrepancy between the quantum yields we observe and the literature values, however, we provide experimental evidence that this discrepancy is due to the different temperatures of our study. Vibrational cooling occurs on a 20 ns time scale, and cascades in a highly nonstatistical manner through one single normal mode (most likely the ONO bending mode nu(5)). Intermolecular energy dissipation into the rare gas matrix is more efficient than intramolecular vibrational energy redistribution and the matrix environment can certainly not be considered a weak perturbation.
在最近的一篇论文[R. 尚茨等人,《化学物理杂志》122, 044509 (2005)]中,我们借助飞秒红外光谱研究了在氪基质中红外驱动的HONO顺反异构化。我们发现异构化发生在20皮秒的时间尺度上,然而,顺式到反式的量子产率仅为10%,显著低于文献报道的值(接近100%)。同时,我们得出结论,在本研究中达到的最大延迟时间(500皮秒)时,振动能量并未完全从分子中耗散出去。为了验证是否存在其他更慢的反应通道,我们在此将研究扩展到长达100纳秒的延迟时间。在32 K的温度下,我们确实在2纳秒的时间尺度上发现了一个额外的异构化通道,这使得总的顺式到反式量子产率增加到约30%。反式到顺式的量子产率约为7%。然而,我们观察到的量子产率与文献值之间仍然存在差异,不过,我们提供了实验证据表明这种差异是由于我们研究的温度不同。振动冷却发生在20纳秒的时间尺度上,并以高度非统计的方式通过一个单一的简正模式(最有可能是ONO弯曲模式ν(5))发生级联。分子间向稀有气体基质的能量耗散比分子内振动能量重新分布更有效,并且基质环境肯定不能被视为弱微扰。