Suppr超能文献

扭转破缺对称性有助于在电子基态下对仿生电荷耦合核运动进行红外激发。

Torsionally broken symmetry assists infrared excitation of biomimetic charge-coupled nuclear motions in the electronic ground state.

作者信息

Chatterjee Gourab, Jha Ajay, Blanco-Gonzalez Alejandro, Tiwari Vandana, Manathunga Madushanka, Duan Hong-Guang, Tellkamp Friedjof, Prokhorenko Valentyn I, Ferré Nicolas, Dasgupta Jyotishman, Olivucci Massimo, Miller R J Dwayne

机构信息

Max Planck Institute for the Structure and Dynamics of Matter Luruper Chaussee 149 22761 Hamburg Germany.

Department of Chemistry, Bowling Green State University Bowling Green OH 43403 USA

出版信息

Chem Sci. 2022 Jul 19;13(32):9392-9400. doi: 10.1039/d2sc02133a. eCollection 2022 Aug 17.

Abstract

The concerted interplay between reactive nuclear and electronic motions in molecules actuates chemistry. Here, we demonstrate that out-of-plane torsional deformation and vibrational excitation of stretching motions in the electronic ground state modulate the charge-density distribution in a donor-bridge-acceptor molecule in solution. The vibrationally-induced change, visualised by transient absorption spectroscopy with a mid-infrared pump and a visible probe, is mechanistically resolved by molecular dynamics simulations. Mapping the potential energy landscape attributes the observed charge-coupled coherent nuclear motions to the population of the initial segment of a double-bond isomerization channel, also seen in biological molecules. Our results illustrate the pivotal role of pre-twisted molecular geometries in enhancing the transfer of vibrational energy to specific molecular modes, prior to thermal redistribution. This motivates the search for synthetic strategies towards achieving potentially new infrared-mediated chemistry.

摘要

分子中活性核运动与电子运动之间的协同相互作用驱动着化学反应。在此,我们证明,在电子基态下,平面外扭转变形和拉伸运动的振动激发会调制溶液中供体-桥-受体分子的电荷密度分布。通过中红外泵浦和可见探针的瞬态吸收光谱可视化的振动诱导变化,通过分子动力学模拟从机理上进行了解析。绘制势能面将观察到的电荷耦合相干核运动归因于双键异构化通道初始段的布居,这在生物分子中也可见到。我们的结果说明了预扭转分子几何结构在热再分布之前增强振动能量向特定分子模式转移方面的关键作用。这激发了对实现潜在新的红外介导化学的合成策略的探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e9a/9384489/cb07db139ba4/d2sc02133a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验