Schwalger Tilo, Dzhanoev Arsen, Loskutov Alexander
Department of Physics, Humboldt University, Berlin, Germany.
Chaos. 2006 Jun;16(2):023109. doi: 10.1063/1.2195787.
The problem of chaos suppression by parametric perturbations is considered. Despite the widespread opinion that chaotic behavior may be stabilized by perturbations of any system parameter, we construct a counterexample showing that this is not necessarily the case. In general, chaos suppression means that parametric perturbations should be applied within a set of parameters at which the system has a positive maximal Lyapunov exponent. Analyzing the known Duffing-Holmes model by a Melnikov method, we showed that chaotic dynamics cannot be suppressed by harmonic perturbations of a certain parameter, independently from the other parameter values. Thus, to stabilize the behavior of chaotic systems, the perturbation and parameters should be carefully chosen.
考虑了通过参数扰动来抑制混沌的问题。尽管普遍认为任何系统参数的扰动都可能使混沌行为稳定下来,但我们构造了一个反例表明情况并非一定如此。一般来说,混沌抑制意味着应在系统具有正的最大李雅普诺夫指数的一组参数内施加参数扰动。通过梅尔尼科夫方法分析已知的杜芬 - 霍姆斯模型,我们表明特定参数的谐波扰动无法抑制混沌动力学,而与其他参数值无关。因此,为了稳定混沌系统的行为,应仔细选择扰动和参数。