Suppr超能文献

利用化学位移和序列同源性准确预测蛋白质扭转角。

Accurate prediction of protein torsion angles using chemical shifts and sequence homology.

作者信息

Neal Stephen, Berjanskii Mark, Zhang Haiyan, Wishart David S

机构信息

Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.

出版信息

Magn Reson Chem. 2006 Jul;44 Spec No:S158-67. doi: 10.1002/mrc.1832.

Abstract

Torsion angle restraints are frequently used in the determination and refinement of protein structures by NMR. These restraints may be obtained by J coupling, cross-correlation measurements, nuclear Overhauser effects (NOEs) or secondary chemical shifts. Currently most backbone (phi/psi) torsion angles are determined using a combination of J(HNHalpha) couplings and chemical shift measurements while most side-chain (chi1) angles and cis/trans peptide bond angles (omega) are determined via NOEs. The dependency on multiple experimental (and computational) methods to obtain different torsion angle restraints is both time-consuming and error prone. The situation could be greatly improved if the determination of all torsion angles (phi, psi, chi and omega) could be made via a single type of measurement (i.e. chemical shifts). Here we describe a program, called SHIFTOR, that is able to accurately predict a large number of protein torsion angles (phi, psi, omega, chi1) using only 1H, 13C and 15N chemical shift assignments as input. Overall, the program is 100x faster and its predictions are approximately 20% better than existing methods. The program is also capable of predicting chi1 angles with 81% accuracy and omega angles with 100% accuracy. SHIFTOR exploits many of the recent developments and observations regarding chemical shift dependencies as well as using information in the Protein Databank to improve the quality of its shift-derived torsion angle predictions. SHIFTOR is available as a freely accessible web server at http://wishart.biology.ualberta.ca/shiftor.

摘要

扭转角约束在通过核磁共振确定和优化蛋白质结构中经常使用。这些约束可通过J耦合、交叉相关测量、核Overhauser效应(NOE)或二级化学位移获得。目前,大多数主链(φ/ψ)扭转角是通过J(HNHα)耦合和化学位移测量相结合来确定的,而大多数侧链(χ1)角和顺/反肽键角(ω)是通过NOE确定的。依赖多种实验(和计算)方法来获得不同的扭转角约束既耗时又容易出错。如果所有扭转角(φ、ψ、χ和ω)都能通过单一类型的测量(即化学位移)来确定,情况将得到极大改善。在这里,我们描述了一个名为SHIFTOR的程序,它仅使用1H、13C和15N化学位移归属作为输入,就能准确预测大量蛋白质扭转角(φ、ψ、ω、χ1)。总体而言,该程序比现有方法快100倍,其预测效果约好20%。该程序还能够以81%的准确率预测χ1角,以100%的准确率预测ω角。SHIFTOR利用了许多关于化学位移依赖性的最新进展和观察结果,并利用蛋白质数据库中的信息来提高其基于化学位移的扭转角预测质量。SHIFTOR可作为一个免费访问的网络服务器,网址为http://wishart.biology.ualberta.ca/shiftor。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验