Suppr超能文献

染色体组织与染色质修饰:对基因组功能和进化的影响

Chromosome organization and chromatin modification: influence on genome function and evolution.

作者信息

Holmquist G P, Ashley T

机构信息

Biology Department, City of Hope Medical Center, Duarte, CA, USA.

出版信息

Cytogenet Genome Res. 2006;114(2):96-125. doi: 10.1159/000093326.

Abstract

Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution.

摘要

核小体的组蛋白修饰区分常染色质和异染色质状态,区分真核生物与原核生物的基因调控,并且似乎使真核生物能够将重组事件集中在基因浓度最高的区域。另外四种调节细胞谱系向分化状态分化的表观遗传机制参与了分化状态的遗传,例如DNA甲基化、RNA干扰、间期隔室之间的基因重新定位以及基因复制时间。所使用的额外机制的数量随着分类单元体细胞复杂性的增加而增加。从一个位点转录的小干扰RNA(siRNA)跨基因靶向远端但互补位点的异染色质RNA干扰相关成核的能力,似乎是沿染色体协调染色质状态的核心。大多数基因在处于异染色质状态时是无活性的。然而,β-异染色质内的基因实际上需要异染色质状态来实现其活性,这一特性使这些基因独特地成为siRNA的来源,以靶向源位点和远端位点的异染色质化。脊椎动物染色体被组织成永久性结构,在S期,这些结构调节复制子簇的同步激发。在中期可见为G带、在减数分裂时可见为减数分裂染色粒的晚期复制簇,体现了所有五种自我强化的表观遗传机制在本体论上的利用,以调节称为兼性(条件性)异染色质的可逆染色质状态。由带边界分隔的交替常染色质/异染色质结构域,以及在本体论分化过程中G带基因的间期重新定位,可对减数分裂相互作用和哺乳动物核型进化施加限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验