Suppr超能文献

先进的荧光纳米显微镜在揭示有丝分裂染色体结构方面的贡献。

Contribution of advanced fluorescence nano microscopy towards revealing mitotic chromosome structure.

机构信息

Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Oxford, UK.

Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, P.O.Box 3500, Karachi, 74800, Pakistan.

出版信息

Chromosome Res. 2021 Mar;29(1):19-36. doi: 10.1007/s10577-021-09654-5. Epub 2021 Mar 9.

Abstract

The organization of chromatin into higher-order structures and its condensation process represent one of the key challenges in structural biology. This is important for elucidating several disease states. To address this long-standing problem, development of advanced imaging methods has played an essential role in providing understanding into mitotic chromosome structure and compaction. Amongst these are two fast evolving fluorescence imaging technologies, specifically fluorescence lifetime imaging (FLIM) and super-resolution microscopy (SRM). FLIM in particular has been lacking in the application of chromosome research while SRM has been successfully applied although not widely. Both these techniques are capable of providing fluorescence imaging with nanometer information. SRM or "nanoscopy" is capable of generating images of DNA with less than 50 nm resolution while FLIM when coupled with energy transfer may provide less than 20 nm information. Here, we discuss the advantages and limitations of both methods followed by their contribution to mitotic chromosome studies. Furthermore, we highlight the future prospects of how advancements in new technologies can contribute in the field of chromosome science.

摘要

染色质的高级结构组织及其浓缩过程是结构生物学的主要挑战之一。这对于阐明几种疾病状态非常重要。为了解决这个长期存在的问题,先进成像方法的发展在提供有丝分裂染色体结构和压缩的理解方面发挥了重要作用。其中包括两种快速发展的荧光成像技术,即荧光寿命成像(FLIM)和超分辨率显微镜(SRM)。FLIM 特别是在染色体研究中的应用一直缺乏,而 SRM 虽然已经成功应用,但并不广泛。这两种技术都能够提供具有纳米级信息的荧光成像。SRM 或“纳米显微镜”能够生成分辨率小于 50nm 的 DNA 图像,而当与能量转移结合时,FLIM 可能提供小于 20nm 的信息。在这里,我们讨论了这两种方法的优缺点,以及它们对有丝分裂染色体研究的贡献。此外,我们还强调了新技术的进步如何为染色体科学领域做出贡献的未来前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验