Suppr超能文献

扩散张量成像中最小二乘估计方法的统一理论与算法框架。

A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging.

作者信息

Koay Cheng Guan, Chang Lin-Ching, Carew John D, Pierpaoli Carlo, Basser Peter J

机构信息

National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

出版信息

J Magn Reson. 2006 Sep;182(1):115-25. doi: 10.1016/j.jmr.2006.06.020. Epub 2006 Jul 7.

Abstract

A unifying theoretical and algorithmic framework for diffusion tensor estimation is presented. Theoretical connections among the least squares (LS) methods, (linear least squares (LLS), weighted linear least squares (WLLS), nonlinear least squares (NLS) and their constrained counterparts), are established through their respective objective functions, and higher order derivatives of these objective functions, i.e., Hessian matrices. These theoretical connections provide new insights in designing efficient algorithms for NLS and constrained NLS (CNLS) estimation. Here, we propose novel algorithms of full Newton-type for the NLS and CNLS estimations, which are evaluated with Monte Carlo simulations and compared with the commonly used Levenberg-Marquardt method. The proposed methods have a lower percent of relative error in estimating the trace and lower reduced chi2 value than those of the Levenberg-Marquardt method. These results also demonstrate that the accuracy of an estimate, particularly in a nonlinear estimation problem, is greatly affected by the Hessian matrix. In other words, the accuracy of a nonlinear estimation is algorithm-dependent. Further, this study shows that the noise variance in diffusion weighted signals is orientation dependent when signal-to-noise ratio (SNR) is low (<or=5). A new experimental design is, therefore, proposed to properly account for the directional dependence in diffusion weighted signal variance.

摘要

本文提出了一种用于扩散张量估计的统一理论和算法框架。通过最小二乘法(LS)方法(线性最小二乘法(LLS)、加权线性最小二乘法(WLLS)、非线性最小二乘法(NLS)及其约束对应方法)各自的目标函数以及这些目标函数的高阶导数(即海森矩阵),建立了它们之间的理论联系。这些理论联系为设计用于NLS和约束NLS(CNLS)估计的高效算法提供了新的见解。在此,我们提出了用于NLS和CNLS估计的全新牛顿型算法,并通过蒙特卡罗模拟对其进行评估,并与常用的列文伯格-马夸特方法进行比较。与列文伯格-马夸特方法相比,所提出的方法在估计迹时具有更低的相对误差百分比和更低的约化卡方值。这些结果还表明,估计的准确性,特别是在非线性估计问题中,受海森矩阵的影响很大。换句话说,非线性估计的准确性取决于算法。此外,本研究表明,当信噪比(SNR)较低(≤5)时,扩散加权信号中的噪声方差与方向有关。因此,提出了一种新的实验设计,以适当考虑扩散加权信号方差中的方向依赖性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验