Suppr超能文献

扩散张量成像中张量衍生量异常估计的研究。

Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging.

作者信息

Koay Cheng Guan, Carew John D, Alexander Andrew L, Basser Peter J, Meyerand M Elizabeth

机构信息

Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Magn Reson Med. 2006 Apr;55(4):930-6. doi: 10.1002/mrm.20832.

Abstract

The diffusion tensor is typically assumed to be positive definite. However, noise in the measurements may cause the eigenvalues of the tensor estimate to be negative, thereby violating this assumption. Negative eigenvalues in diffusion tensor imaging (DTI) data occur predominately in regions of high anisotropy and may cause the fractional anisotropy (FA) to exceed unity. Two constrained least squares methods for eliminating negative eigenvalues are explored. These methods, the constrained linear least squares method (CLLS) and the constrained nonlinear least squares method (CNLS), are compared with other commonly used algebraic constrained methods. The CLLS tensor estimator can be shown to be equivalent to the linear least squares (LLS) tensor estimator when the LLS tensor estimate is positive definite. Similarly, the CNLS tensor estimator can be shown to be equivalent to the nonlinear least squares (NLS) tensor estimator when the NLS tensor estimate is positive definite. The constrained least squares methods for eliminating negative eigenvalues are evaluated with both simulations and in vivo human brain DTI data. Simulation results show that the CNLS method is, in terms of mean squared error for estimating trace and FA, the most effective method for correcting negative eigenvalues.

摘要

扩散张量通常被假定为正定的。然而,测量中的噪声可能会导致张量估计的特征值为负,从而违反这一假设。扩散张量成像(DTI)数据中的负特征值主要出现在各向异性较高的区域,并且可能导致分数各向异性(FA)超过1。本文探讨了两种用于消除负特征值的约束最小二乘法。将这些方法,即约束线性最小二乘法(CLLS)和约束非线性最小二乘法(CNLS),与其他常用的代数约束方法进行了比较。当线性最小二乘(LLS)张量估计为正定的时候,CLLS张量估计器可以被证明等同于LLS张量估计器。类似地,当非线性最小二乘(NLS)张量估计为正定的时候,CNLS张量估计器可以被证明等同于NLS张量估计器。利用模拟数据和体内人脑DTI数据对消除负特征值的约束最小二乘法进行了评估。模拟结果表明,就估计迹和FA的均方误差而言,CNLS方法是校正负特征值最有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验