Guigas Gernot, Weiss Matthias
Cellular Biophysics Group (BIOMS), German Cancer Research Center, D-69120 Heidelberg, Germany.
Biophys J. 2006 Oct 1;91(7):2393-8. doi: 10.1529/biophysj.106.087031. Epub 2006 Jul 7.
Experimentally determined diffusion constants are often used to elucidate the size and oligomeric state of membrane proteins and domains. This approach critically relies on the knowledge of the size-dependence of diffusion. We have used mesoscopic simulations to thoroughly quantify the size-dependent diffusion properties of membrane inclusions. For small radii R, we find that the lateral diffusion coefficient D is well described by the Saffman-Delbrück relation, which predicts a logarithmic decrease of D with R. However, beyond a critical radius Rc approximately hetam/(2etac) (h, bilayer thickness; etam/c, viscosity of the membrane/surrounding solvent) we observe significant deviations and the emergence of an asymptotic scaling D approximately 1/R2. The latter originates from the asymptotic hydrodynamics and the inclusion's internal degrees of freedom that become particularly relevant on short timescales. In contrast to the lateral diffusion, the size dependence of the rotational diffusion constant Dr follows the predicted hydrodynamic scaling Dr approximately 1/R2 over the entire range of sizes studied here.
实验测定的扩散常数常被用于阐明膜蛋白和结构域的大小及寡聚状态。这种方法严重依赖于扩散对尺寸依赖性的相关知识。我们已使用介观模拟来全面量化膜内含物的尺寸依赖性扩散特性。对于小半径(R),我们发现横向扩散系数(D)能很好地由萨夫曼 - 德尔布吕克关系描述,该关系预测(D)随(R)呈对数下降。然而,超过临界半径(R_c)(约为(\eta_m/(2\eta_c)),其中(h)为双层厚度,(\eta_m / \eta_c)为膜/周围溶剂的粘度)时,我们观察到显著偏差以及渐近标度(D\approx 1/R^2)的出现。后者源于渐近流体动力学以及内含物的内部自由度,这些在短时间尺度上变得尤为重要。与横向扩散不同,旋转扩散常数(D_r)的尺寸依赖性在此处研究的整个尺寸范围内遵循预测的流体动力学标度(D_r\approx 1/R^2)。