Suppr超能文献

膜内含物的尺寸依赖性扩散。

Size-dependent diffusion of membrane inclusions.

作者信息

Guigas Gernot, Weiss Matthias

机构信息

Cellular Biophysics Group (BIOMS), German Cancer Research Center, D-69120 Heidelberg, Germany.

出版信息

Biophys J. 2006 Oct 1;91(7):2393-8. doi: 10.1529/biophysj.106.087031. Epub 2006 Jul 7.

Abstract

Experimentally determined diffusion constants are often used to elucidate the size and oligomeric state of membrane proteins and domains. This approach critically relies on the knowledge of the size-dependence of diffusion. We have used mesoscopic simulations to thoroughly quantify the size-dependent diffusion properties of membrane inclusions. For small radii R, we find that the lateral diffusion coefficient D is well described by the Saffman-Delbrück relation, which predicts a logarithmic decrease of D with R. However, beyond a critical radius Rc approximately hetam/(2etac) (h, bilayer thickness; etam/c, viscosity of the membrane/surrounding solvent) we observe significant deviations and the emergence of an asymptotic scaling D approximately 1/R2. The latter originates from the asymptotic hydrodynamics and the inclusion's internal degrees of freedom that become particularly relevant on short timescales. In contrast to the lateral diffusion, the size dependence of the rotational diffusion constant Dr follows the predicted hydrodynamic scaling Dr approximately 1/R2 over the entire range of sizes studied here.

摘要

实验测定的扩散常数常被用于阐明膜蛋白和结构域的大小及寡聚状态。这种方法严重依赖于扩散对尺寸依赖性的相关知识。我们已使用介观模拟来全面量化膜内含物的尺寸依赖性扩散特性。对于小半径(R),我们发现横向扩散系数(D)能很好地由萨夫曼 - 德尔布吕克关系描述,该关系预测(D)随(R)呈对数下降。然而,超过临界半径(R_c)(约为(\eta_m/(2\eta_c)),其中(h)为双层厚度,(\eta_m / \eta_c)为膜/周围溶剂的粘度)时,我们观察到显著偏差以及渐近标度(D\approx 1/R^2)的出现。后者源于渐近流体动力学以及内含物的内部自由度,这些在短时间尺度上变得尤为重要。与横向扩散不同,旋转扩散常数(D_r)的尺寸依赖性在此处研究的整个尺寸范围内遵循预测的流体动力学标度(D_r\approx 1/R^2)。

相似文献

1
Size-dependent diffusion of membrane inclusions.
Biophys J. 2006 Oct 1;91(7):2393-8. doi: 10.1529/biophysj.106.087031. Epub 2006 Jul 7.
2
Influence of hydrophobic mismatching on membrane protein diffusion.
Biophys J. 2008 Aug;95(3):L25-7. doi: 10.1529/biophysj.108.136069. Epub 2008 May 23.
3
Translational diffusion in lipid membranes beyond the Saffman-Delbruck approximation.
Biophys J. 2008 Mar 1;94(5):L41-3. doi: 10.1529/biophysj.107.126565. Epub 2008 Jan 11.
4
Mobility in geometrically confined membranes.
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12605-10. doi: 10.1073/pnas.1102646108. Epub 2011 Jul 18.
5
Contributions to membrane-embedded-protein diffusion beyond hydrodynamic theories.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061921. doi: 10.1103/PhysRevE.85.061921. Epub 2012 Jun 25.
6
Hydrodynamics of Diffusion in Lipid Membrane Simulations.
Phys Rev Lett. 2018 Jun 29;120(26):268104. doi: 10.1103/PhysRevLett.120.268104.
7
Diffusion of Integral Membrane Proteins in Protein-Rich Membranes.
J Phys Chem Lett. 2017 Sep 7;8(17):4308-4313. doi: 10.1021/acs.jpclett.7b01758. Epub 2017 Aug 29.
8
Lateral diffusion of membrane proteins.
J Am Chem Soc. 2009 Sep 9;131(35):12650-6. doi: 10.1021/ja902853g.
9
Calculating hydrodynamic interactions for membrane-embedded objects.
J Chem Phys. 2014 Sep 28;141(12):124711. doi: 10.1063/1.4896180.

引用本文的文献

2
Bragg-Williams Theory for Particles with a Size-Modulating Internal Degree of Freedom.
Molecules. 2023 Jun 28;28(13):5060. doi: 10.3390/molecules28135060.
3
Protein Crowding and Cholesterol Increase Cell Membrane Viscosity in a Temperature Dependent Manner.
J Chem Theory Comput. 2023 May 9;19(9):2630-2643. doi: 10.1021/acs.jctc.3c00060. Epub 2023 Apr 18.
5
Influence of the extracellular domain size on the dynamic behavior of membrane proteins.
Biophys J. 2022 Oct 18;121(20):3826-3836. doi: 10.1016/j.bpj.2022.09.010. Epub 2022 Sep 14.
6
Nanoporous Membranes of Densely Packed Carbon Nanotubes Formed by Lipid-Mediated Self-Assembly.
ACS Appl Bio Mater. 2024 Feb 19;7(2):528-534. doi: 10.1021/acsabm.2c00585. Epub 2022 Sep 7.
7
Assembly formation of minor dihydrosphingomyelin in sphingomyelin-rich ordered membrane domains.
Sci Rep. 2020 Jul 16;10(1):11794. doi: 10.1038/s41598-020-68688-7.
8
Atomic Force Microscopy Visualizes Mobility of Photosynthetic Proteins in Grana Thylakoid Membranes.
Biophys J. 2020 Apr 21;118(8):1876-1886. doi: 10.1016/j.bpj.2020.02.029. Epub 2020 Mar 13.
9
Quantitative microscopy reveals dynamics and fate of clustered IRE1α.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1533-1542. doi: 10.1073/pnas.1915311117. Epub 2019 Dec 23.
10
Shear-Induced Migration of a Transmembrane Protein within a Vesicle.
Biophys J. 2019 Apr 23;116(8):1483-1494. doi: 10.1016/j.bpj.2019.03.017. Epub 2019 Mar 28.

本文引用的文献

1
Close-up view of the modifications of fluid membranes due to phospholipase A(2).
J Phys Condens Matter. 2005 Nov 30;17(47):S4015-24. doi: 10.1088/0953-8984/17/47/025. Epub 2005 Nov 4.
2
Lateral mobility of proteins in liquid membranes revisited.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2098-102. doi: 10.1073/pnas.0511026103. Epub 2006 Feb 6.
3
Membranes are more mosaic than fluid.
Nature. 2005 Dec 1;438(7068):578-80. doi: 10.1038/nature04394.
4
Tunable generic model for fluid bilayer membranes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 1):011506. doi: 10.1103/PhysRevE.72.011506. Epub 2005 Jul 26.
5
Constant-pressure and constant-surface tension simulations in dissipative particle dynamics.
J Chem Phys. 2005 Mar 22;122(12):124901. doi: 10.1063/1.1867374.
6
Dynamics of domain growth in self-assembled fluid vesicles.
Phys Rev Lett. 2004 Nov 5;93(19):198105. doi: 10.1103/PhysRevLett.93.198105. Epub 2004 Nov 4.
7
Challenges and artifacts in quantitative photobleaching experiments.
Traffic. 2004 Sep;5(9):662-71. doi: 10.1111/j.1600-0854.2004.00215.x.
8
Solvent-free simulations of fluid membrane bilayers.
J Chem Phys. 2004 Jan 8;120(2):1059-71. doi: 10.1063/1.1625913.
9
The lateral diffusion of selectively aggregated peptides in giant unilamellar vesicles.
Biophys J. 2003 Mar;84(3):1756-64. doi: 10.1016/s0006-3495(03)74983-2.
10
The state of lipid rafts: from model membranes to cells.
Annu Rev Biophys Biomol Struct. 2003;32:257-83. doi: 10.1146/annurev.biophys.32.110601.142439. Epub 2003 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验