Suppr超能文献

蛋白质拥挤和胆固醇以温度依赖的方式增加细胞膜的粘度。

Protein Crowding and Cholesterol Increase Cell Membrane Viscosity in a Temperature Dependent Manner.

机构信息

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-16000 Prague 6, Czech Republic.

Department of Physics, University of Helsinki, FI-00560 Helsinki, Finland.

出版信息

J Chem Theory Comput. 2023 May 9;19(9):2630-2643. doi: 10.1021/acs.jctc.3c00060. Epub 2023 Apr 18.

Abstract

Shear viscosity of lipid membranes dictates how fast lipids, proteins, and other membrane constituents travel along the membrane and rotate around their principal axis, thus governing the rates of diffusion-limited reactions taking place at membranes. In this framework, the heterogeneity of biomembranes indicates that cells could regulate these rates via varying local viscosities. Unfortunately, experiments to probe membrane viscosity under various conditions are tedious and error prone. Molecular dynamics simulations provide an attractive alternative, especially given that recent theoretical developments enable the elimination of finite-size effects in simulations. Here, we use a variety of different equilibrium methods to extract the shear viscosities of lipid membranes from both coarse-grained and all-atom molecular dynamics simulations. We systematically probe the variables relevant for cellular membranes, namely, membrane protein crowding, cholesterol concentration, and the length and saturation level of lipid acyl chains, as well as temperature. Our results highlight that in their physiologically relevant ranges, protein concentration, cholesterol concentration, and temperature have significantly larger effects on membrane viscosity than lipid acyl chain length and unsaturation level. In particular, the crowding with proteins has a significant effect on the shear viscosity of lipid membranes and thus on the diffusion occurring in the membranes. Our work also provides the largest collection of membrane viscosity values from simulation to date, which can be used by the community to predict the diffusion coefficients or their trends via the Saffman-Delbrück description. Additionally, it is worth emphasizing that diffusion coefficients extracted from simulations exploiting periodic boundary conditions must be corrected for the finite-size effects prior to comparison with experiment, for which the present collection of viscosity values can readily be used. Finally, our thorough comparison to experiments suggests that there is room for improvement in the description of bilayer dynamics provided by the present force fields.

摘要

脂质膜的剪切黏度决定了脂质、蛋白质和其他膜成分在膜上的移动速度以及围绕主轴线的旋转速度,从而控制在膜上发生的扩散限制反应的速率。在这种情况下,生物膜的异质性表明,细胞可以通过改变局部黏度来调节这些速率。不幸的是,在各种条件下探测膜黏度的实验既繁琐又容易出错。分子动力学模拟提供了一种有吸引力的替代方法,特别是由于最近的理论发展使得在模拟中消除有限尺寸效应成为可能。在这里,我们使用各种不同的平衡方法从粗粒化和全原子分子动力学模拟中提取脂质膜的剪切黏度。我们系统地探测了与细胞膜相关的变量,即膜蛋白拥挤、胆固醇浓度、脂质酰链的长度和饱和度以及温度。我们的结果强调,在生理相关范围内,蛋白质浓度、胆固醇浓度和温度对膜黏度的影响明显大于脂质酰链长度和不饱和程度。特别是,蛋白质拥挤对脂质膜的剪切黏度有显著影响,从而对膜内的扩散产生影响。我们的工作还提供了迄今为止模拟中最大的膜黏度值集合,社区可以使用这些值通过 Saffman-Delbrück 描述来预测扩散系数或其趋势。此外,值得强调的是,必须在与实验进行比较之前,对利用周期性边界条件进行的模拟中提取的扩散系数进行有限尺寸效应的修正,为此可以方便地使用本黏度值集合。最后,我们与实验的彻底比较表明,目前力场对双层动力学的描述还有改进的空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b9/10173458/a6b23684620e/ct3c00060_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验