David Matthias, Gervais Hendrik W, Karmrodt Jens, Depta Arno L, Kempski Oliver, Markstaller Klaus
Department of Anesthesiology, Johannes Gutenberg-University, Mainz, Germany.
Crit Care. 2006;10(4):R100. doi: 10.1186/cc4967.
The objective was to study the effects of a lung recruitment procedure by stepwise increases of mean airway pressure upon organ blood flow and hemodynamics during high-frequency oscillatory ventilation (HFOV) versus pressure-controlled ventilation (PCV) in experimental lung injury.
Lung damage was induced by repeated lung lavages in seven anesthetized pigs (23-26 kg). In randomized order, HFOV and PCV were performed with a fixed sequence of mean airway pressure increases (20, 25, and 30 mbar every 30 minutes). The transpulmonary pressure, systemic hemodynamics, intracranial pressure, cerebral perfusion pressure, organ blood flow (fluorescent microspheres), arterial and mixed venous blood gases, and calculated pulmonary shunt were determined at each mean airway pressure setting.
The transpulmonary pressure increased during lung recruitment (HFOV, from 15 +/- 3 mbar to 22 +/- 2 mbar, P < 0.05; PCV, from 15 +/- 3 mbar to 23 +/- 2 mbar, P < 0.05), and high airway pressures resulted in elevated left ventricular end-diastolic pressure (HFOV, from 3 +/- 1 mmHg to 6 +/- 3 mmHg, P < 0.05; PCV, from 2 +/- 1 mmHg to 7 +/- 3 mmHg, P < 0.05), pulmonary artery occlusion pressure (HFOV, from 12 +/- 2 mmHg to 16 +/- 2 mmHg, P < 0.05; PCV, from 13 +/- 2 mmHg to 15 +/- 2 mmHg, P < 0.05), and intracranial pressure (HFOV, from 14 +/- 2 mmHg to 16 +/- 2 mmHg, P < 0.05; PCV, from 15 +/- 3 mmHg to 17 +/- 2 mmHg, P < 0.05). Simultaneously, the mean arterial pressure (HFOV, from 89 +/- 7 mmHg to 79 +/- 9 mmHg, P < 0.05; PCV, from 91 +/- 8 mmHg to 81 +/- 8 mmHg, P < 0.05), cardiac output (HFOV, from 3.9 +/- 0.4 l/minute to 3.5 +/- 0.3 l/minute, P < 0.05; PCV, from 3.8 +/- 0.6 l/minute to 3.4 +/- 0.3 l/minute, P < 0.05), and stroke volume (HFOV, from 32 +/- 7 ml to 28 +/- 5 ml, P < 0.05; PCV, from 31 +/- 2 ml to 26 +/- 4 ml, P < 0.05) decreased. Blood flows to the heart, brain, kidneys and jejunum were maintained. Oxygenation improved and the pulmonary shunt fraction decreased below 10% (HFOV, P < 0.05; PCV, P < 0.05). We detected no differences between HFOV and PCV at comparable transpulmonary pressures.
A typical recruitment procedure at the initiation of HFOV improved oxygenation but also decreased systemic hemodynamics at high transpulmonary pressures when no changes of vasoactive drugs and fluid management were performed. Blood flow to the organs was not affected during lung recruitment. These effects were independent of the ventilator mode applied.
目的是研究在实验性肺损伤中,与压力控制通气(PCV)相比,高频振荡通气(HFOV)期间通过逐步增加平均气道压力进行肺复张程序对器官血流和血流动力学的影响。
对7头麻醉猪(23 - 26千克)进行反复肺灌洗诱导肺损伤。按照随机顺序,以固定的平均气道压力增加序列(每30分钟增加20、25和30厘米水柱)进行HFOV和PCV。在每个平均气道压力设置下测定跨肺压、全身血流动力学、颅内压、脑灌注压、器官血流(荧光微球)、动脉血和混合静脉血气以及计算的肺分流。
肺复张期间跨肺压升高(HFOV,从15±3厘米水柱升至22±2厘米水柱,P < 0.05;PCV,从15±3厘米水柱升至23±2厘米水柱,P < 0.05),高气道压力导致左心室舒张末期压力升高(HFOV,从3±1毫米汞柱升至6±3毫米汞柱,P < 0.05;PCV,从2±1毫米汞柱升至7±3毫米汞柱,P < 0.05)、肺动脉闭塞压升高(HFOV,从12±2毫米汞柱升至16±2毫米汞柱,P < 0.05;PCV,从13±2毫米汞柱升至15±2毫米汞柱,P < 0.05)和颅内压升高(HFOV,从14±2毫米汞柱升至16±2毫米汞柱,P < 0.05;PCV,从15±3毫米汞柱升至17±2毫米汞柱,P < 0.05)。同时,平均动脉压降低(HFOV,从89±7毫米汞柱降至79±9毫米汞柱,P < 0.05;PCV ,从91±8毫米汞柱降至81±8毫米汞柱,P < 0.05)、心输出量降低(HFOV,从3.9±0.4升/分钟降至3.5±0.3升/分钟,P < 0.05;PCV,从3.8±0.6升/分钟降至3.4±0.3升/分钟,P < 0.05)和每搏输出量降低(HFOV,从32±7毫升降至28±5毫升,P < 0.05;PCV,从31±2毫升降至26±4毫升,P < 0.05)。流向心脏、大脑、肾脏和空肠的血流得以维持。氧合改善,肺分流分数降至10%以下(HFOV,P < 0.05;PCV,P < 0.05)。在可比的跨肺压下,我们未检测到HFOV和PCV之间存在差异。
在未改变血管活性药物和液体管理的情况下,HFOV起始时典型的复张程序改善了氧合,但在高跨肺压时也降低了全身血流动力学。肺复张期间器官血流未受影响。这些影响与所应用呼吸机模式无关。