Suppr超能文献

使用MM-PB/SA方法对FKBP12抑制剂的结合亲和力进行的计算分析。

A computational analysis of the binding affinities of FKBP12 inhibitors using the MM-PB/SA method.

作者信息

Xu Yong, Wang Renxiao

机构信息

State Key Laboratory of Bioorganic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, People's Republic of China.

出版信息

Proteins. 2006 Sep 1;64(4):1058-68. doi: 10.1002/prot.21044.

Abstract

The FK506-binding proteins have been targets of pharmaceutical interests over years. We have studied the binding of a set of 12 nonimmunosuppressive small-molecule inhibitors to FKBP12 through molecular dynamics simulations. Each complex was subjected to 1-ns MD simulation conducted in an explicit solvent environment under constant temperature and pressure. The binding free energy of each complex was then computed by the MM-PB/SA method in the AMBER program. Our MM-PB/SA computation produced a good correlation between the experimentally determined and the computed binding free energies with a correlation coefficient (R(2)) of 0.93 and a standard deviation as low as 0.30 kcal/mol. The vibrational entropy term given by the normal mode analysis was found to be helpful for achieving this correlation. Moreover, an adjustment to one weight factor in the PB/SA model was essential to correct the absolute values of the final binding free energies to a reasonable range. A head-to-head comparison of our MM-PB/SA model with a previously reported Linear Response Approximation (LRA) model suggested that the MM-PB/SA method is more robust in binding affinity prediction for this class of compounds.

摘要

多年来,FK506结合蛋白一直是药物研究的靶点。我们通过分子动力学模拟研究了一组12种非免疫抑制性小分子抑制剂与FKBP12的结合情况。每个复合物在恒温恒压的明确溶剂环境中进行了1纳秒的分子动力学模拟。然后在AMBER程序中通过MM-PB/SA方法计算每个复合物的结合自由能。我们的MM-PB/SA计算在实验测定的结合自由能与计算得到的结合自由能之间产生了良好的相关性,相关系数(R(2))为0.93,标准偏差低至0.30千卡/摩尔。发现由正常模式分析给出的振动熵项有助于实现这种相关性。此外,对PB/SA模型中的一个权重因子进行调整对于将最终结合自由能的绝对值校正到合理范围至关重要。我们的MM-PB/SA模型与先前报道的线性响应近似(LRA)模型的直接比较表明,MM-PB/SA方法在预测这类化合物的结合亲和力方面更稳健。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验