Suppr超能文献

基于机器视觉的秀丽隐杆线虫ω形弯曲和反转检测

Machine vision based detection of omega bends and reversals in C. elegans.

作者信息

Huang Kuang-Man, Cosman Pamela, Schafer William R

机构信息

Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093-0407, USA.

出版信息

J Neurosci Methods. 2006 Dec 15;158(2):323-36. doi: 10.1016/j.jneumeth.2006.06.007. Epub 2006 Jul 12.

Abstract

The behavior of the nematode Caenorhabditis elegans has proven increasingly useful for the genetic dissection of neurobiological signaling pathways and for investigating the neural and molecular basis of nervous system function. Locomotion is among the most complex aspects of C. elegans behavior, and involves a number of discrete motor activities such as omega bends (deep bends typically on the ventral side of the body which reorient the direction of forward locomotion) and reversals (changes in the direction of the locomotion wave that cause a switch from forward to backward crawling). Reliable methods for detecting and quantifying these movements are critical for escape reflexes and navigation behaviors. Here we describe a novel algorithm to automatically detect omega bends, which relies in part on a new method for obtaining a morphological skeleton describing the body posture of coiled worms. We also present an optimized algorithm to detect reversals, which showed improved performance over previously described methods. Together, these new algorithms have made it possible to reliably detect events that are time-consuming and laborious to detect by real-time observation or human video analysis. They have also made it possible to identify mutants with subtle behavioral abnormalities, such as those in which omega bends are dorsoventrally unbiased or uncorrelated with reversals. These methods should therefore facilitate quantitative analysis of a wide range of locomotion-related behaviors in this important neurobiological model organism.

摘要

秀丽隐杆线虫的行为已被证明在神经生物学信号通路的遗传剖析以及研究神经系统功能的神经和分子基础方面越来越有用。运动是秀丽隐杆线虫行为中最复杂的方面之一,涉及许多离散的运动活动,如ω形弯曲(通常在身体腹侧的深弯曲,可重新定向向前运动的方向)和反转(运动波方向的改变,导致从向前爬行切换到向后爬行)。检测和量化这些运动的可靠方法对于逃避反射和导航行为至关重要。在这里,我们描述了一种自动检测ω形弯曲的新算法,该算法部分依赖于一种获取描述盘绕蠕虫身体姿势的形态骨架的新方法。我们还提出了一种优化的算法来检测反转,该算法比先前描述的方法表现出更好的性能。总之,这些新算法使得可靠地检测通过实时观察或人工视频分析耗时且费力的事件成为可能。它们还使得识别具有细微行为异常的突变体成为可能,例如那些ω形弯曲在背腹方向上无偏向或与反转不相关的突变体。因此,这些方法应有助于对这种重要的神经生物学模型生物中广泛的与运动相关的行为进行定量分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验