Department of Physiology, University of Toronto, Toronto, ON, Canada.
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
Sci Adv. 2024 Apr 12;10(15):eadk0002. doi: 10.1126/sciadv.adk0002. Epub 2024 Apr 10.
Continuity of behaviors requires animals to make smooth transitions between mutually exclusive behavioral states. Neural principles that govern these transitions are not well understood. spontaneously switch between two opposite motor states, forward and backward movement, a phenomenon thought to reflect the reciprocal inhibition between interneurons AVB and AVA. Here, we report that spontaneous locomotion and their corresponding motor circuits are not separately controlled. AVA and AVB are neither functionally equivalent nor strictly reciprocally inhibitory. AVA, but not AVB, maintains a depolarized membrane potential. While AVA phasically inhibits the forward promoting interneuron AVB at a fast timescale, it maintains a tonic, extrasynaptic excitation on AVB over the longer timescale. We propose that AVA, with tonic and phasic activity of opposite polarities on different timescales, acts as a master neuron to break the symmetry between the underlying forward and backward motor circuits. This master neuron model offers a parsimonious solution for sustained locomotion consisted of mutually exclusive motor states.
行为的连续性要求动物在相互排斥的行为状态之间平稳过渡。然而,控制这些转变的神经原则还没有得到很好的理解。秀丽隐杆线虫会在两种相反的运动状态(前进和后退)之间自发切换,这一现象被认为反映了中间神经元 AVB 和 AVA 之间的交互抑制。在这里,我们报告说,自发运动及其对应的运动回路不是分别控制的。AVA 和 AVB 既不是功能等效的,也不是严格的交互抑制的。AVA 但不是 AVB 保持去极化的膜电位。虽然 AVA 在快速时间尺度上阶段性地抑制促进向前运动的中间神经元 AVB,但它在较长的时间尺度上对 AVB 保持着紧张的、突触外的兴奋。我们提出,AVA 以不同时间尺度上极性相反的紧张和阶段性活动,充当主神经元,打破基础向前和向后运动回路之间的对称性。这个主神经元模型为由相互排斥的运动状态组成的持续运动提供了一个简洁的解决方案。