Suppr超能文献

分子成像前景。

Molecular imaging perspectives.

作者信息

Cassidy Paul J, Radda George K

机构信息

Oxford Cardiac Metabolism Research Group, University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK.

出版信息

J R Soc Interface. 2005 Jun 22;2(3):133-44. doi: 10.1098/rsif.2005.0040.

Abstract

Molecular imaging is an emerging technology at the life science/physical science interface which is set to revolutionize our understanding and treatment of disease. The tools of molecular imaging are the imaging modalities and their corresponding contrast agents. These facilitate interaction with a biological target at a molecular level in a number of ways. The diverse nature of molecular imaging requires knowledge from both the life and physical sciences for its successful development and implementation. The aim of this review is to introduce the subject of molecular imaging from both life science and physical science perspectives. However, we will restrict our coverage to the prominent in vivo molecular imaging modalities of magnetic resonance imaging, optical imaging and nuclear imaging. The physical basis of these imaging modalities, the use of contrast agents and the imaging parameters of sensitivity, temporal resolution and spatial resolution are described. Then, the specificity of contrast agents for targeting and sensing molecular events, and some applications of molecular imaging in biology and medicine are given. Finally, the diverse nature of molecular imaging and its reliance on interdisciplinary collaboration is discussed.

摘要

分子成像作为生命科学与物理科学交叉领域的一项新兴技术,必将彻底改变我们对疾病的理解和治疗方式。分子成像的工具包括成像模式及其相应的造影剂。这些工具通过多种方式促进在分子水平上与生物靶点的相互作用。分子成像的多样性决定了其成功开发和应用需要生命科学和物理科学两方面的知识。本综述旨在从生命科学和物理科学两个角度介绍分子成像这一主题。然而,我们将把讨论范围限制在磁共振成像、光学成像和核成像等突出的体内分子成像模式上。本文描述了这些成像模式的物理基础、造影剂的使用以及灵敏度、时间分辨率和空间分辨率等成像参数。接着,介绍了造影剂针对分子事件进行靶向和传感的特异性,以及分子成像在生物学和医学中的一些应用。最后,讨论了分子成像的多样性及其对跨学科合作的依赖。

相似文献

1
Molecular imaging perspectives.
J R Soc Interface. 2005 Jun 22;2(3):133-44. doi: 10.1098/rsif.2005.0040.
2
[New perspectives of imaging techniques in islet research].
Dtsch Med Wochenschr. 2011 May;136(21):1130-4. doi: 10.1055/s-0031-1280525. Epub 2011 May 17.
3
[Magnetic resonance tomography and hybrid imaging in rheumatology].
Z Rheumatol. 2013 Mar;72(2):137-44. doi: 10.1007/s00393-012-1068-7.
4
The technology of MRI--the next 10 years?
Br J Radiol. 2008 Aug;81(968):601-17. doi: 10.1259/bjr/96872829.
5
Discrepancies and priorities in staging and restaging malignant lymphoma by SPET, SPET/CT, PET/CT and PET/MRI.
Hell J Nucl Med. 2013 Sep-Dec;16(3):223-9. doi: 10.1967/s002449910098. Epub 2013 Oct 2.
6
Multimodality cardiovascular molecular imaging technology.
J Nucl Med. 2010 May 1;51 Suppl 1(Suppl 1):38S-50S. doi: 10.2967/jnumed.109.068155.
7
Molecular probes for the in vivo imaging of cancer.
Mol Biosyst. 2009 Nov;5(11):1279-91. doi: 10.1039/b911307j. Epub 2009 Aug 19.
8
PET versus SPECT: strengths, limitations and challenges.
Nucl Med Commun. 2008 Mar;29(3):193-207. doi: 10.1097/MNM.0b013e3282f3a515.
10
Nuclear investigative techniques and their interpretation in the heart and vascular disease.
Ann Card Anaesth. 2020 Jul-Sep;23(3):262-271. doi: 10.4103/aca.ACA_54_19.

引用本文的文献

2
Interfacing with the Brain: How Nanotechnology Can Contribute.
ACS Nano. 2025 Mar 25;19(11):10630-10717. doi: 10.1021/acsnano.4c10525. Epub 2025 Mar 10.
4
Unveiling Invisible Extracellular Vesicles: Cutting-Edge Technologies for Their in Vivo Visualization.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024 Sep-Oct;16(5):e2009. doi: 10.1002/wnan.2009.
5
Exploring the Potential of Nanogels: From Drug Carriers to Radiopharmaceutical Agents.
Adv Healthc Mater. 2024 Jan;13(1):e2301404. doi: 10.1002/adhm.202301404. Epub 2023 Sep 28.
8
Next generation of neurological therapeutics: Native and bioengineered extracellular vesicles derived from stem cells.
Asian J Pharm Sci. 2022 Nov;17(6):779-797. doi: 10.1016/j.ajps.2022.10.002. Epub 2022 Nov 2.
9
GLAD Based Advanced Nanostructures for Diversified Biosensing Applications: Recent Progress.
Biosensors (Basel). 2022 Dec 2;12(12):1115. doi: 10.3390/bios12121115.

本文引用的文献

1
The signal-to-noise ratio of the nuclear magnetic resonance experiment. 1976.
J Magn Reson. 2011 Dec;213(2):329-43. doi: 10.1016/j.jmr.2011.09.018.
2
Design and evaluation of a continuous-wave diffuse optical tomography system.
Opt Express. 1999 Apr 12;4(8):287-98. doi: 10.1364/oe.4.000287.
3
Comparison of imaging geometries for diffuse optical tomography of tissue.
Opt Express. 1999 Apr 12;4(8):270-86. doi: 10.1364/oe.4.000270.
4
A novel method for fast imaging of brain function, non-invasively, with light.
Opt Express. 1998 May 11;2(10):411-23. doi: 10.1364/oe.2.000411.
5
Quantum dots for live cells, in vivo imaging, and diagnostics.
Science. 2005 Jan 28;307(5709):538-44. doi: 10.1126/science.1104274.
6
Quantum dot nanocrystals for in vivo molecular and cellular imaging.
Photochem Photobiol. 2004 Nov-Dec;80(3):377-85. doi: 10.1562/0031-8655(2004)080<0377:QDNFIV>2.0.CO;2.
8
In vivo cancer targeting and imaging with semiconductor quantum dots.
Nat Biotechnol. 2004 Aug;22(8):969-76. doi: 10.1038/nbt994. Epub 2004 Jul 18.
9
10
Imaging molecular interactions by multiphoton FLIM.
Biol Cell. 2004 Apr;96(3):231-6. doi: 10.1016/j.biolcel.2003.12.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验