Suppr超能文献

铜绿假单胞菌的带状-螺旋-螺旋DNA结合蛋白AlgZ(AmrZ)控制IV型菌毛的颤动运动和生物合成。

The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili.

作者信息

Baynham Patricia J, Ramsey Deborah M, Gvozdyev Borys V, Cordonnier Ellen M, Wozniak Daniel J

机构信息

Department of Biology, St. Edward's University, 3001 South Congress Avenue, Austin, TX 78704, USA.

出版信息

J Bacteriol. 2006 Jan;188(1):132-40. doi: 10.1128/JB.188.1.132-140.2006.

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that is commonly found in water and soil. In order to colonize surfaces with low water content, P. aeruginosa utilizes a flagellum-independent form of locomotion called twitching motility, which is dependent upon the extension and retraction of type IV pili. This study demonstrates that AlgZ, previously identified as a DNA-binding protein absolutely required for transcription of the alginate biosynthetic operon, is required for twitching motility. AlgZ may be required for the biogenesis or function of type IV pili in twitching motility. Transmission electron microscopy analysis of an algZ deletion in nonmucoid PAO1 failed to detect surface pili. To examine expression and localization of PilA (the major pilin subunit), whole-cell extracts and cell surface pilin preparations were analyzed by Western blotting. While the PilA levels present in whole-cell extracts were similar for wild-type P. aeruginosa and P. aeruginosa with the algZ deletion, the amount of PilA on the surface of the cells was drastically reduced in the algZ mutant. Analysis of algZ and algD mutants indicates that the DNA-binding activity of AlgZ is essential for the regulation of twitching motility and that this is independent of the role of AlgZ in alginate expression. These data show that AlgZ DNA-binding activity is required for twitching motility independently of its role in alginate production and that this involves the surface localization of type IV pili. Given this new role in twitching motility, we propose that algZ (PA3385) be designated amrZ (alginate and motility regulator Z).

摘要

铜绿假单胞菌是一种常见于水和土壤中的机会致病菌。为了在低含水量表面定殖,铜绿假单胞菌利用一种不依赖鞭毛的运动形式,称为颤动运动,这依赖于IV型菌毛的伸展和收缩。本研究表明,AlgZ(先前被鉴定为藻酸盐生物合成操纵子转录绝对必需的DNA结合蛋白)是颤动运动所必需的。AlgZ可能是IV型菌毛在颤动运动中的生物发生或功能所必需的。对非黏液型PAO1中algZ缺失进行透射电子显微镜分析,未能检测到表面菌毛。为了检测菌毛蛋白A(主要菌毛亚基)的表达和定位,通过蛋白质免疫印迹分析了全细胞提取物和细胞表面菌毛蛋白制剂。虽然野生型铜绿假单胞菌和algZ缺失的铜绿假单胞菌全细胞提取物中菌毛蛋白A的水平相似,但algZ突变体中细胞表面的菌毛蛋白A量大幅减少。对algZ和algD突变体的分析表明,AlgZ的DNA结合活性对于颤动运动的调节至关重要,且这独立于AlgZ在藻酸盐表达中的作用。这些数据表明,AlgZ的DNA结合活性是颤动运动所必需的,与其在藻酸盐产生中的作用无关,且这涉及IV型菌毛的表面定位。鉴于其在颤动运动中的这一新作用,我们建议将algZ(PA3385)命名为amrZ(藻酸盐和运动调节因子Z)。

相似文献

3
5
Binding of Pseudomonas aeruginosa AlgZ to sites upstream of the algZ promoter leads to repression of transcription.
J Bacteriol. 2005 Jul;187(13):4430-43. doi: 10.1128/JB.187.13.4430-4443.2005.
7
Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis.
J Bacteriol. 2004 Sep;186(17):5672-84. doi: 10.1128/JB.186.17.5672-5684.2004.
10
Global Regulatory Pathways Converge To Control Expression of Pseudomonas aeruginosa Type IV Pili.
mBio. 2022 Feb 22;13(1):e0369621. doi: 10.1128/mbio.03696-21. Epub 2022 Jan 25.

引用本文的文献

1
SadB, a mediator of AmrZ proteolysis and biofilm development in Pseudomonas aeruginosa.
NPJ Biofilms Microbiomes. 2025 May 13;11(1):77. doi: 10.1038/s41522-025-00710-0.
2
Characterization of acquired β-lactamases in and quantification of their contributions to resistance.
Microbiol Spectr. 2024 Oct 3;12(10):e0069424. doi: 10.1128/spectrum.00694-24. Epub 2024 Sep 9.
3
Flip the switch: the role of FleQ in modulating the transition between the free-living and sessile mode of growth in .
J Bacteriol. 2024 Mar 21;206(3):e0036523. doi: 10.1128/jb.00365-23. Epub 2024 Mar 4.
4
Transcriptional Regulators Controlling Virulence in .
Int J Mol Sci. 2023 Jul 25;24(15):11895. doi: 10.3390/ijms241511895.
5
Adaption of F113 to the Rhizosphere Environment-The AmrZ-FleQ Hub.
Microorganisms. 2023 Apr 15;11(4):1037. doi: 10.3390/microorganisms11041037.
6
The Alginate and Motility Regulator AmrZ is Essential for the Regulation of the Dispersion Response by Biofilms.
mSphere. 2022 Dec 21;7(6):e0050522. doi: 10.1128/msphere.00505-22. Epub 2022 Nov 14.
7
Detoxification Response of MFAF76a to Gaseous Pollutants NO and NO.
Microorganisms. 2022 Aug 5;10(8):1576. doi: 10.3390/microorganisms10081576.
8
Aminoglycoside-Modifying Enzymes Are Sufficient to Make Clinically Resistant to Key Antibiotics.
Antibiotics (Basel). 2022 Jul 1;11(7):884. doi: 10.3390/antibiotics11070884.
10
Genomic erosion and horizontal gene transfer shape functional differences of the ExlA toxin in spp.
iScience. 2022 Jun 14;25(7):104596. doi: 10.1016/j.isci.2022.104596. eCollection 2022 Jul 15.

本文引用的文献

1
Binding of Pseudomonas aeruginosa AlgZ to sites upstream of the algZ promoter leads to repression of transcription.
J Bacteriol. 2005 Jul;187(13):4430-43. doi: 10.1128/JB.187.13.4430-4443.2005.
2
Pseudomonas aeruginosa fimL regulates multiple virulence functions by intersecting with Vfr-modulated pathways.
Mol Microbiol. 2005 Mar;55(5):1357-78. doi: 10.1111/j.1365-2958.2005.04479.x.
3
DNA binding: a novel function of Pseudomonas aeruginosa type IV pili.
J Bacteriol. 2005 Feb;187(4):1455-64. doi: 10.1128/JB.187.4.1455-1464.2005.
4
5
The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa.
J Bacteriol. 2004 Oct;186(20):6837-44. doi: 10.1128/JB.186.20.6837-6844.2004.
6
Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis.
J Bacteriol. 2004 Sep;186(17):5672-84. doi: 10.1128/JB.186.17.5672-5684.2004.
7
Control of Pseudomonas aeruginosa algZ expression by the alternative sigma factor AlgT.
J Bacteriol. 2003 Dec;185(24):7297-300. doi: 10.1128/JB.185.24.7297-7300.2003.
8
Comprehensive transposon mutant library of Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14339-44. doi: 10.1073/pnas.2036282100. Epub 2003 Nov 14.
9
10
Type IV pili and twitching motility.
Annu Rev Microbiol. 2002;56:289-314. doi: 10.1146/annurev.micro.56.012302.160938. Epub 2002 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验