Suppr超能文献

弹性系留的粘性负载使肌球蛋白-V的运动呈现出规则步态。瞬态力松弛对随机过程影响的模拟。

An elastically tethered viscous load imposes a regular gait on the motion of myosin-V. Simulation of the effect of transient force relaxation on a stochastic process.

作者信息

Schilstra Maria J, Martin Stephen R

机构信息

University of Hertfordshire Biocomputation Research Group, STRI College Lane, Hatfield AL10 9AB, UK.

出版信息

J R Soc Interface. 2006 Feb 22;3(6):153-65. doi: 10.1098/rsif.2005.0098.

Abstract

Myosin-V is a processive molecular motor that moves membrane vesicles along actin tracks. In the simple model for motor and cargo motion investigated here, an elastic connection between motor and cargo transiently absorbs the abrupt mechanical transitions of the motor, and allows smooth relaxation of the cargo to a new position. We use a stochastic description to model motor stepping, with kinetics that depends on the instantaneous force exerted on the motor through the elastic connection. Tether relaxation is modelled as a continuous process, in which the rate is determined by the viscous drag of the cargo and the stiffness profile of the connection. Quantitative combined stochastic-continuous simulation of the dynamics of this system shows that bulky loads can impose a highly regular gait on the motor. If the characteristics of the elastic connection are similar to those of the myosin-II coiled-coil domain, the myosin-V motor, tether and cargo form a true escapement, in which the motor only escapes from its current position after one or more force thresholds have been crossed. Multiple thresholds limit the variation in tether length to values below that of the total step size.

摘要

肌球蛋白-V是一种沿肌动蛋白轨道移动膜泡的持续性分子马达。在此处研究的马达与货物运动的简单模型中,马达与货物之间的弹性连接会短暂吸收马达的突然机械转变,并使货物平稳松弛至新位置。我们使用随机描述来模拟马达步移,其动力学取决于通过弹性连接施加在马达上的瞬时力。系链松弛被建模为一个连续过程,其速率由货物的粘性阻力和连接的刚度分布决定。对该系统动力学进行的定量随机-连续联合模拟表明,大负载可使马达具有高度规则的步态。如果弹性连接的特性与肌球蛋白-II卷曲螺旋结构域的特性相似,那么肌球蛋白-V马达、系链和货物就形成了一个真正的擒纵机构,其中马达只有在越过一个或多个力阈值后才会从其当前位置逃脱。多个阈值将系链长度的变化限制在总步长以下的值。

相似文献

2
Dynamics of myosin-V processivity.
Biophys J. 2005 Feb;88(2):999-1008. doi: 10.1529/biophysj.104.047662. Epub 2004 Nov 19.
3
Extensibility of the extended tail domain of processive and nonprocessive myosin V molecules.
Biophys J. 2009 Dec 16;97(12):3123-31. doi: 10.1016/j.bpj.2009.09.033.
4
The structural basis of myosin V processive movement as revealed by electron cryomicroscopy.
Mol Cell. 2005 Sep 2;19(5):595-605. doi: 10.1016/j.molcel.2005.07.015.
5
Cargo-binding makes a wild-type single-headed myosin-VI move processively.
Biophys J. 2006 May 15;90(10):3643-52. doi: 10.1529/biophysj.105.075721. Epub 2006 Feb 24.
6
Contractile stress generation by actomyosin gels.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051912. doi: 10.1103/PhysRevE.74.051912. Epub 2006 Nov 17.
7
Myosin V is a left-handed spiral motor on the right-handed actin helix.
Nat Struct Biol. 2002 Jun;9(6):464-7. doi: 10.1038/nsb803.
8
Collective dynamics of elastically coupled myosin V motors.
J Biol Chem. 2012 Aug 10;287(33):27753-61. doi: 10.1074/jbc.M112.371393. Epub 2012 Jun 20.
9
Simultaneous observation of tail and head movements of myosin V during processive motion.
J Biol Chem. 2010 Dec 31;285(53):42068-74. doi: 10.1074/jbc.M110.180265. Epub 2010 Oct 25.
10
Force generation by actin polymerization II: the elastic ratchet and tethered filaments.
Biophys J. 2003 Mar;84(3):1591-605. doi: 10.1016/S0006-3495(03)74969-8.

引用本文的文献

1
Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecule level.
Nat Commun. 2018 Jul 20;9(1):2844. doi: 10.1038/s41467-018-05251-z.
2
Critical motor number for fractional steps of cytoskeletal filaments in gliding assays.
PLoS One. 2012;7(8):e43219. doi: 10.1371/journal.pone.0043219. Epub 2012 Aug 21.
3
Walking to work: roles for class V myosins as cargo transporters.
Nat Rev Mol Cell Biol. 2011 Dec 7;13(1):13-26. doi: 10.1038/nrm3248.
4
Extensibility of the extended tail domain of processive and nonprocessive myosin V molecules.
Biophys J. 2009 Dec 16;97(12):3123-31. doi: 10.1016/j.bpj.2009.09.033.
5
Regular gaits and optimal velocities for motor proteins.
Biophys J. 2008 Sep 15;95(6):2681-91. doi: 10.1529/biophysj.108.130674. Epub 2008 Jun 13.
6
Introduction: statistical mechanics of molecular and cellular biological systems.
J R Soc Interface. 2006 Feb 22;3(6):123-4. doi: 10.1098/rsif.2005.0107.
7
The cargo-binding domain regulates structure and activity of myosin 5.
Nature. 2006 Jul 13;442(7099):212-5. doi: 10.1038/nature04865.

本文引用的文献

1
Load-dependent kinetics of myosin-V can explain its high processivity.
Nat Cell Biol. 2005 Sep;7(9):861-9. doi: 10.1038/ncb1287. Epub 2005 Aug 14.
2
Elastic lever-arm model for myosin V.
Biophys J. 2005 Jun;88(6):3792-805. doi: 10.1529/biophysj.104.046763. Epub 2005 Mar 25.
3
Force-dependent stepping kinetics of myosin-V.
Biophys J. 2005 Jun;88(6):4402-10. doi: 10.1529/biophysj.104.053504. Epub 2005 Mar 11.
4
Dynamics of myosin-V processivity.
Biophys J. 2005 Feb;88(2):999-1008. doi: 10.1529/biophysj.104.047662. Epub 2004 Nov 19.
5
Mechanochemical coupling of two substeps in a single myosin V motor.
Nat Struct Mol Biol. 2004 Sep;11(9):877-83. doi: 10.1038/nsmb806. Epub 2004 Aug 1.
6
Myosin V processivity: multiple kinetic pathways for head-to-head coordination.
Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5542-6. doi: 10.1073/pnas.0307247101. Epub 2004 Mar 31.
7
Myosin V motor proteins: marching stepwise towards a mechanism.
J Cell Biol. 2003 Nov 10;163(3):445-50. doi: 10.1083/jcb.200308093.
8
The myosin coiled-coil is a truly elastic protein structure.
Nat Mater. 2002 Dec;1(4):232-5. doi: 10.1038/nmat776.
9
A simple kinetic model describes the processivity of myosin-v.
Biophys J. 2003 Mar;84(3):1642-50. doi: 10.1016/S0006-3495(03)74973-X.
10
The gated gait of the processive molecular motor, myosin V.
Nat Cell Biol. 2002 Jan;4(1):59-65. doi: 10.1038/ncb732.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验