Suppr超能文献

肌球蛋白 V 在进行性运动过程中尾部和头部运动的同时观察。

Simultaneous observation of tail and head movements of myosin V during processive motion.

机构信息

Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA.

出版信息

J Biol Chem. 2010 Dec 31;285(53):42068-74. doi: 10.1074/jbc.M110.180265. Epub 2010 Oct 25.

Abstract

Processive stepping of myosin Va (myoV) has been tracked by monitoring either the tail position (center of mass) or the position of one or both heads. Here, we combine these two approaches by attaching a quantum dot to one of the motor domains and a bead to the tail. Using laser trapping and total internal reflection microscopy, the position of one head and the tail are observed simultaneously as myoV moves processively on an actin filament bundle against the resistive load of the laser trap. The head moves one step (73 ± 10 nm) for every two steps of the tail (35 ± 9 nm). One tail step occurs concurrently with quantum dot-labeled head movement, whereas the other occurs with movement of the unlabeled head, consistent with a hand-over-hand model. Load increases the probability of the motor taking a back step. The back step is triggered by the motor taking a shorter forward step (head step, 68 ± 11 nm; tail step, 32 ± 10 nm), likely one actin monomer short of its preferred binding site. During a back step, the motor reverses its hand-over-hand motion, with the leading head detaching and reattaching to one of multiple actin sites behind the trailing head. After a back step, the motor can correct its mistake and step processively forward at resistive loads <0.7 piconewton or stall or detach at higher loads. Back stepping may provide a mechanism to ensure efficient cargo delivery even when myoV encounters obstacles within the actin cytoskeletal meshwork or when other motors are attached to the same cargo.

摘要

肌球蛋白 Va(myoV)的连续运动已通过监测尾部(质心)或一个或两个头部的位置来跟踪。在这里,我们通过将量子点附着到一个马达结构域上并将珠子附着到尾部上来结合这两种方法。使用激光捕获和全内反射显微镜,当 myoV 在肌动蛋白丝束上移动以抵抗激光捕获的阻力负载时,同时观察一个头部和尾部的位置。头部每移动两个步(35 ± 9nm)就移动一步(73 ± 10nm)。一个尾部步与量子点标记的头部运动同时发生,而另一个尾部步与未标记的头部运动同时发生,与手拉手模型一致。负载增加了马达向后移动的可能性。后向步由马达向前移动的步幅变短(头部步,68 ± 11nm;尾部步,32 ± 10nm)触发,可能是一个肌动蛋白单体短于其首选结合位点。在后向步中,马达反转其手拉手运动,领头头脱离并重新附着在尾随头后面的多个肌动蛋白位点之一上。在后向步之后,马达可以在抵抗负载<0.7 皮牛顿或失速或在更高负载下脱离的情况下,向前连续地移动。向后移动可能提供一种机制,即使在 myoV 遇到肌动蛋白细胞骨架网络内的障碍物或其他马达附着在同一货物上时,也能确保有效货物传递。

相似文献

1
Simultaneous observation of tail and head movements of myosin V during processive motion.
J Biol Chem. 2010 Dec 31;285(53):42068-74. doi: 10.1074/jbc.M110.180265. Epub 2010 Oct 25.
2
Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity.
Biophys J. 2005 May;88(5):L30-2. doi: 10.1529/biophysj.105.061903. Epub 2005 Mar 11.
3
Direct observation of the myosin Va recovery stroke that contributes to unidirectional stepping along actin.
PLoS Biol. 2011 Apr;9(4):e1001031. doi: 10.1371/journal.pbio.1001031. Epub 2011 Apr 12.
4
Full-length myosin Va exhibits altered gating during processive movement on actin.
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):E218-24. doi: 10.1073/pnas.1109709109. Epub 2012 Jan 6.
5
Role of the lever arm in the processive stepping of myosin V.
Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14159-64. doi: 10.1073/pnas.182539599. Epub 2002 Oct 17.
6
More than just a cargo adapter, melanophilin prolongs and slows processive runs of myosin Va.
J Biol Chem. 2013 Oct 11;288(41):29313-22. doi: 10.1074/jbc.M113.476929. Epub 2013 Aug 26.
7
Cargo-binding makes a wild-type single-headed myosin-VI move processively.
Biophys J. 2006 May 15;90(10):3643-52. doi: 10.1529/biophysj.105.075721. Epub 2006 Feb 24.
8
A flexible domain is essential for the large step size and processivity of myosin VI.
Mol Cell. 2005 Feb 18;17(4):603-9. doi: 10.1016/j.molcel.2005.01.015.
9
Small teams of myosin Vc motors coordinate their stepping for efficient cargo transport on actin bundles.
J Biol Chem. 2017 Jun 30;292(26):10998-11008. doi: 10.1074/jbc.M117.780791. Epub 2017 May 5.
10
Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography.
Nature. 2006 Jul 13;442(7099):208-11. doi: 10.1038/nature04719. Epub 2006 Apr 16.

引用本文的文献

1
Myosin-5 varies its step length to carry cargo straight along the irregular F-actin track.
Proc Natl Acad Sci U S A. 2024 Mar 26;121(13):e2401625121. doi: 10.1073/pnas.2401625121. Epub 2024 Mar 20.
3
Myosin Va transport of liposomes in three-dimensional actin networks is modulated by actin filament density, position, and polarity.
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8326-8335. doi: 10.1073/pnas.1901176116. Epub 2019 Apr 9.
5
Mesoscopic analysis of motion and conformation of cross-bridges.
Biophys Rev. 2012 Dec;4(4):299-311. doi: 10.1007/s12551-012-0074-y. Epub 2012 Apr 17.
6
Myosin Vc Is Specialized for Transport on a Secretory Superhighway.
Curr Biol. 2016 Aug 22;26(16):2202-7. doi: 10.1016/j.cub.2016.06.029. Epub 2016 Aug 4.
7
Vascular disease-causing mutation R258C in ACTA2 disrupts actin dynamics and interaction with myosin.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):E4168-77. doi: 10.1073/pnas.1507587112. Epub 2015 Jul 7.
8
Phosphorylation of myosin regulatory light chain has minimal effect on kinetics and distribution of orientations of cross bridges of rabbit skeletal muscle.
Am J Physiol Regul Integr Comp Physiol. 2014 Feb 15;306(4):R222-33. doi: 10.1152/ajpregu.00382.2013. Epub 2013 Nov 27.
9
The kinetics of mechanically coupled myosins exhibit group size-dependent regimes.
Biophys J. 2013 Sep 17;105(6):1466-74. doi: 10.1016/j.bpj.2013.07.054.
10
More than just a cargo adapter, melanophilin prolongs and slows processive runs of myosin Va.
J Biol Chem. 2013 Oct 11;288(41):29313-22. doi: 10.1074/jbc.M113.476929. Epub 2013 Aug 26.

本文引用的文献

1
Direct observation of the myosin-Va power stroke and its reversal.
Nat Struct Mol Biol. 2010 May;17(5):590-5. doi: 10.1038/nsmb.1820. Epub 2010 Apr 25.
2
The lever arm effects a mechanical asymmetry of the myosin-V-actin bond.
Biophys J. 2010 Jan 20;98(2):277-81. doi: 10.1016/j.bpj.2009.10.017.
3
Robust processivity of myosin V under off-axis loads.
Nat Chem Biol. 2010 Apr;6(4):300-5. doi: 10.1038/nchembio.322. Epub 2010 Mar 14.
4
A nonprocessive class V myosin drives cargo processively when a kinesin- related protein is a passenger.
Curr Biol. 2009 Dec 29;19(24):2121-5. doi: 10.1016/j.cub.2009.10.069. Epub 2009 Dec 10.
5
Load and Pi control flux through the branched kinetic cycle of myosin V.
J Biol Chem. 2008 Jun 20;283(25):17477-84. doi: 10.1074/jbc.M800539200. Epub 2008 Apr 27.
6
Myosin V and Kinesin act as tethers to enhance each others' processivity.
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4691-6. doi: 10.1073/pnas.0711531105. Epub 2008 Mar 17.
7
Myosin V from head to tail.
Cell Mol Life Sci. 2008 May;65(9):1378-89. doi: 10.1007/s00018-008-7507-6.
8
Regulation of myosin V processivity by calcium at the single molecule level.
J Biol Chem. 2006 Oct 20;281(42):31987-94. doi: 10.1074/jbc.M605181200. Epub 2006 Aug 18.
9
Assembly dynamics of microtubules at molecular resolution.
Nature. 2006 Aug 10;442(7103):709-12. doi: 10.1038/nature04928. Epub 2006 Jun 25.
10
Phosphorylation of a single head of smooth muscle myosin activates the whole molecule.
Biochemistry. 2006 Apr 25;45(16):5280-9. doi: 10.1021/bi060154c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验