Li Zheng, Lazaridis Themis
Department of Chemistry, City College of CUNY, New York, New York 10031, USA.
J Phys Chem B. 2005 Jan 13;109(1):662-70. doi: 10.1021/jp0477912.
Interactions at the binding interface of biomolecular complexes are often mediated by ordered water molecules. In this work, we considered two concanavalin A-carbohydrate complexes. In the first, a water molecule is buried at the binding interface. In the second, this water molecule is displaced by a modification of the ligand (Clarke, C.; Woods, R. J.; Gluska, J.; Cooper, A.; Nutley, M. A.; Boons, G. J. J. Am. Chem. Soc. 2001, 123, 12238-12247). We computed the contribution of this water molecule to the thermodynamic properties using statistical mechanical formulas for the energy and entropy and molecular dynamics simulations. Other contributions to the binding affinity, including desolvation, entropy of conformational restriction, and interaction between the ligand and protein, were also computed. The thermodynamic consequences of displacement of the ordered water molecule by ligand modification were in qualitative agreement with experimental data. The free energy contribution of the water molecule (-17.2 kcal/mol; -19.2 enthalpic and +2 entropic) was nearly equivalent to the additional protein-ligand interactions in trimannoside 2 (-18.9 kcal/mol). The two structural ions interact more strongly with the water than with the hydroxyl of trimannoside 2, thus favoring trimannoside 1. The contributions from desolvation and conformational entropy are much smaller but significant, compared to the binding free energy difference. The picture that emerges is that the final outcome of water displacement is sensitive to the details of the binding site and cannot be predicted by simple empirical rules.
生物分子复合物结合界面处的相互作用通常由有序水分子介导。在这项工作中,我们考虑了两种伴刀豆球蛋白A-碳水化合物复合物。在第一种复合物中,一个水分子埋于结合界面处。在第二种复合物中,该水分子因配体的修饰而被取代(克拉克,C.;伍兹,R. J.;格鲁斯卡,J.;库珀,A.;纳特利,M. A.;布恩斯,G. J.《美国化学会志》2001年,123卷,12238 - 12247页)。我们使用能量和熵的统计力学公式以及分子动力学模拟计算了该水分子对热力学性质的贡献。还计算了对结合亲和力的其他贡献,包括去溶剂化、构象限制熵以及配体与蛋白质之间的相互作用。配体修饰导致有序水分子被取代的热力学结果与实验数据在定性上一致。水分子的自由能贡献(-17.2千卡/摩尔;-19.2千卡/摩尔焓变和 +2千卡/摩尔熵变)几乎等同于三甘露糖苷2中额外的蛋白质 - 配体相互作用(-18.9千卡/摩尔)。这两个结构离子与水的相互作用比与三甘露糖苷2的羟基的相互作用更强,因此更有利于三甘露糖苷1。与结合自由能差相比,去溶剂化和构象熵的贡献要小得多但很显著。由此得出的情况是,水分子取代的最终结果对结合位点的细节很敏感,无法通过简单的经验规则预测。