Earl David J, Deem Michael W
Departments of Bioengineering and Physics & Astronomy, Rice University, 6100 Main Street-MS 142, Houston, Texas 77005-1892, USA.
J Phys Chem B. 2005 Apr 14;109(14):6701-4. doi: 10.1021/jp045508t.
Adaptive Monte Carlo methods can be viewed as implementations of Markov chains with infinite memory. We derive a general condition for the convergence of a Monte Carlo method whose history dependence is contained within the simulated density distribution. In convergent cases, our result implies that the balance condition need only be satisfied asymptotically. As an example, we show that the adaptive integration method converges.
自适应蒙特卡罗方法可以看作是具有无限记忆的马尔可夫链的实现。我们推导了一种蒙特卡罗方法收敛的一般条件,该方法的历史依赖性包含在模拟密度分布中。在收敛的情况下,我们的结果意味着平衡条件只需要渐近满足。作为一个例子,我们证明了自适应积分方法是收敛的。