Suppr超能文献

荧光素标记的寡核苷酸包覆在银纳米颗粒上的表面增强荧光。

Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles.

作者信息

Zhang Jian, Malicka Joanna, Gryczynski Ignacy, Lakowicz Joseph R

机构信息

Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, Maryland 21201, USA.

出版信息

J Phys Chem B. 2005 Apr 28;109(16):7643-8. doi: 10.1021/jp0490103.

Abstract

Tiopronin monolayer-protected silver nanoparticles with different core sizes (average diameter = 2, 5, 20 nm) were prepared by using different mole ratios of silver nitrate/tiopronin. Ligands on the silver particles were partially displaced by fluorescein-labeled thiolate single-stranded oligonucleotides or their complementary unlabeled oligonucleotides through ligand exchange. The fluorophores on silver particles showed a surface-enhanced fluorescence (SEF) dependent on the size of metallic cores. The particles could be coupled through hybridizations of oligonucleotides bound on the particles. The coupled particles were aggregated due to multiple displacements of oligonucleotides on each particle, resulting in stronger SEF. The dye-labeled oligonucleotides were assembled on the silver islands on the solid substrate, and the complementary oligonucleotide-displaced particles were coupled via oligonucleotide hybridization. The couplings between particles and islands resulted in an obvious fluorescence enhancement.

摘要

通过使用不同摩尔比的硝酸银/硫普罗宁制备了具有不同核尺寸(平均直径 = 2、5、20 纳米)的硫普罗宁单层保护银纳米颗粒。银颗粒上的配体通过配体交换被荧光素标记的硫醇盐单链寡核苷酸或其互补的未标记寡核苷酸部分取代。银颗粒上的荧光团表现出依赖于金属核尺寸的表面增强荧光(SEF)。颗粒可以通过结合在颗粒上的寡核苷酸杂交进行偶联。由于每个颗粒上寡核苷酸的多次置换,偶联的颗粒发生聚集,导致更强的 SEF。染料标记的寡核苷酸组装在固体基质上的银岛上,互补的寡核苷酸置换颗粒通过寡核苷酸杂交偶联。颗粒与岛之间的偶联导致明显的荧光增强。

相似文献

5
Fluorescence images of DNA-bound YOYO between coupled silver particles.
Langmuir. 2007 Nov 6;23(23):11734-9. doi: 10.1021/la702064v. Epub 2007 Oct 3.
7
Enhanced luminescence of phenyl-phenanthridine dye on aggregated small silver nanoparticles.
J Phys Chem B. 2005 May 12;109(18):8701-6. doi: 10.1021/jp046016j.
8
Fluorescence lifetime correlation spectroscopic study of fluorophore-labeled silver nanoparticles.
Anal Chem. 2008 Oct 1;80(19):7313-8. doi: 10.1021/ac8009356. Epub 2008 Sep 5.
9
DNA hybridization assays using metal-enhanced fluorescence.
Biochem Biophys Res Commun. 2003 Jun 20;306(1):213-8. doi: 10.1016/s0006-291x(03)00935-5.
10
Single-Molecule Studies on Fluorescently Labeled Silver Particles: Effects of Particle Size.
J Phys Chem C Nanomater Interfaces. 2007 Dec 11;112(1):18. doi: 10.1021/jp074938r.

引用本文的文献

1
Plasmonic and Dielectric Metasurfaces for Enhanced Spectroscopic Techniques.
Biosensors (Basel). 2025 Jun 20;15(7):401. doi: 10.3390/bios15070401.
2
Asymmetric parameter enhancement in the split-ring cavity array for virus-like particle sensing.
Biomed Opt Express. 2023 Feb 22;14(3):1216-1227. doi: 10.1364/BOE.483831. eCollection 2023 Mar 1.
4
Electrochemical synthesis of tin plasmonic dendritic nanostructures with SEF capability through replacement.
RSC Adv. 2020 Oct 1;10(59):36042-36050. doi: 10.1039/d0ra06483a. eCollection 2020 Sep 28.
5
Single molecule photophysics near metallic nanostructures.
Proc SPIE Int Soc Opt Eng. 2008 Jan;6862. doi: 10.1117/12.770381. Epub 2008 Feb 21.
6
Recent advances in synthetic methods and applications of silver nanostructures.
Nanoscale Res Lett. 2018 Feb 18;13(1):54. doi: 10.1186/s11671-018-2450-4.
7
Plasmon-Enhanced Photocleaving Dynamics in Colloidal MicroRNA-Functionalized Silver Nanoparticles Monitored with Second Harmonic Generation.
Langmuir. 2016 Oct 11;32(40):10394-10401. doi: 10.1021/acs.langmuir.6b02538. Epub 2016 Sep 26.
8
Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications.
Nanoscale Res Lett. 2016 Dec;11(1):40. doi: 10.1186/s11671-016-1257-4. Epub 2016 Jan 28.
9
Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation.
Nanoscale Res Lett. 2015 Dec;10(1):399. doi: 10.1186/s11671-015-1105-y. Epub 2015 Oct 13.
10
Monitoring the Photocleaving Dynamics of Colloidal MicroRNA-Functionalized Gold Nanoparticles Using Second Harmonic Generation.
Langmuir. 2015 Sep 15;31(36):9983-90. doi: 10.1021/acs.langmuir.5b02199. Epub 2015 Sep 3.

本文引用的文献

1
Multiphoton Excitation of Fluorescence near Metallic Particles: Enhanced and Localized Excitation.
J Phys Chem B. 2002 Mar 1;106(9):2191-2195. doi: 10.1021/jp013013n. Epub 2002 Feb 9.
3
Electrochemical and Laser Deposition of Silver for Use in Metal-Enhanced Fluorescence.
Langmuir. 2003 Jul 22;19(15):6236-6241. doi: 10.1021/la020930r.
4
Enhanced Fluorescence from Fluorophores on Fractal Silver Surfaces.
J Phys Chem B. 2003;107(34):8829-8833. doi: 10.1021/jp022660r.
6
Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission.
Anal Biochem. 2005 Feb 15;337(2):171-94. doi: 10.1016/j.ab.2004.11.026.
9
Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces.
Anal Chem. 2003 Sep 1;75(17):4408-14. doi: 10.1021/ac020739m.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验