Suppr超能文献

优化等温滴定量热法中的实验参数。

Optimizing experimental parameters in isothermal titration calorimetry.

作者信息

Tellinghuisen Joel

机构信息

Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA.

出版信息

J Phys Chem B. 2005 Oct 27;109(42):20027-35. doi: 10.1021/jp053550y.

Abstract

In isothermal titration calorimetry, the statistical precisions with which the equilibrium constant (K) and reaction enthalpy (DeltaH degrees ) can be estimated from data for 1:1 binding depend on a number of quantities, key among them being the products c identical with KM and h identical with DeltaH degrees M, the stoichiometry range (R(m)(), ratio of total titrant X to total titrate M after the last injection), and the number of injections of titrant. A study of the statistical errors as functions of these quantities leads to the following prescription for optimizing throughput and precision: (1) Make 10 injections of titrant. (2) Set the concentrations in accord with the empirical equation R(m)() = 6.4/c(0.2) + 13/c (but no smaller than 1.1). (3) Make the starting concentration M as large as possible within the large-signal limits of the instrumentation but limited to c < 10(3) for estimating K. With this procedure, both K and M are predicted to have relative standard errors <1% over large ranges of K. Systematic errors in the concentrations, X and M, are fully compensated by the "site number" or stoichiometry parameter (n). On the other hand, altering and freezing any of the fit parameters leads to a deterioration of the fit quality and to predictable changes in the other parameters. Fit divergence at very small c is avoidable through a simple redefinition of the fit parameters; however, unless n can be fixed from other information, DeltaH degrees may be statistically ill-defined in this region.

摘要

在等温滴定量热法中,根据1:1结合的数据估算平衡常数(K)和反应焓(ΔH°)时的统计精度取决于多个量,其中关键的量包括乘积c(等同于K[M]₀)和h(等同于ΔH°[M]₀)、化学计量比范围(Rₘₐₓ,最后一次注射后总滴定剂X与总被滴定物M的比率)以及滴定剂的注射次数。对这些量的统计误差作为函数进行研究,得出了优化通量和精度的以下方法:(1)进行10次滴定剂注射。(2)根据经验方程Rₘₐₓ = 6.4/c⁰·² + 13/c(但不小于1.1)设定浓度。(3)在仪器的大信号极限范围内,使起始浓度[M]₀尽可能大,但对于估算K,限制在c < 10³。采用此程序,预计在K的大范围变化中,K和[M]₀的相对标准误差均<1%。浓度[X]₀和[M]₀中的系统误差由“位点数”或化学计量参数(n)完全补偿。另一方面,改变并固定任何拟合参数都会导致拟合质量下降以及其他参数的可预测变化。通过对拟合参数进行简单重新定义可避免在非常小的c时出现拟合发散;然而,除非可以从其他信息确定n,否则在此区域中ΔH°在统计上可能定义不明确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验