Hicks Erin M, Zhang Xiaoyu, Zou Shengli, Lyandres Olga, Spears Kenneth G, Schatz George C, Van Duyne Richard P
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
J Phys Chem B. 2005 Dec 1;109(47):22351-8. doi: 10.1021/jp0545400.
In this work, a detailed and systematic study of the plasmonic properties of a novel film over nanowell surface is investigated. These nanostructures are fabricated using nanosphere lithography and reactive ion etching and structurally characterized by AFM and SEM. The resulting structures show remarkably narrow plasmon bands in reflectance spectra (as little as 0.10 eV) and greater sensitivity to external dielectric environment than has been seen in other nanoparticle systems, resulting in an improvement in the figure of merit (FOM = refractive index sensitivity (eV.RIU(-1))/full width at half-maximum (eV)) for refractive index sensing. Theoretical modeling for the plasmon spectra of these nanostructures is done using discrete dipole approximation code under periodic boundary conditions. The modeling results match the measurements accurately in aspects of the variation of the plasmon line shape with altering internanowell distance and dielectric environment.
在这项工作中,对纳米阱表面新型薄膜的等离子体特性进行了详细而系统的研究。这些纳米结构采用纳米球光刻和反应离子蚀刻技术制备,并通过原子力显微镜(AFM)和扫描电子显微镜(SEM)进行结构表征。所得结构在反射光谱中显示出非常窄的等离子体带(低至0.10 eV),并且比其他纳米粒子系统对外部介电环境更敏感,从而提高了用于折射率传感的品质因数(FOM = 折射率灵敏度(eV·RIU⁻¹)/半高宽(eV))。使用周期边界条件下的离散偶极近似代码对这些纳米结构的等离子体光谱进行了理论建模。建模结果在等离子体线形随纳米阱间距和介电环境变化方面与测量结果精确匹配。