Bellingham James, Chaurasia Shyam S, Melyan Zara, Liu Cuimei, Cameron Morven A, Tarttelin Emma E, Iuvone P Michael, Hankins Mark W, Tosini Gianluca, Lucas Robert J
Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
PLoS Biol. 2006 Jul;4(8):e254. doi: 10.1371/journal.pbio.0040254.
In mammals, the melanopsin gene (Opn4) encodes a sensory photopigment that underpins newly discovered inner retinal photoreceptors. Since its first discovery in Xenopus laevis and subsequent description in humans and mice, melanopsin genes have been described in all vertebrate classes. Until now, all of these sequences have been considered representatives of a single orthologous gene (albeit with duplications in the teleost fish). Here, we describe the discovery and functional characterisation of a new melanopsin gene in fish, bird, and amphibian genomes, demonstrating that, in fact, the vertebrates have evolved two quite separate melanopsins. On the basis of sequence similarity, chromosomal localisation, and phylogeny, we identify our new melanopsins as the true orthologs of the melanopsin gene previously described in mammals and term this grouping Opn4m. By contrast, the previously published melanopsin genes in nonmammalian vertebrates represent a separate branch of the melanopsin family which we term Opn4x. RT-PCR analysis in chicken, zebrafish, and Xenopus identifies expression of both Opn4m and Opn4x genes in tissues known to be photosensitive (eye, brain, and skin). In the day-14 chicken eye, Opn4m mRNA is found in a subset of cells in the outer nuclear, inner nuclear, and ganglion cell layers, the vast majority of which also express Opn4x. Importantly, we show that a representative of the new melanopsins (chicken Opn4m) encodes a photosensory pigment capable of activating G protein signalling cascades in a light- and retinaldehyde-dependent manner under heterologous expression in Neuro-2a cells. A comprehensive in silico analysis of vertebrate genomes indicates that while most vertebrate species have both Opn4m and Opn4x genes, the latter is absent from eutherian and, possibly, marsupial mammals, lost in the course of their evolution as a result of chromosomal reorganisation. Thus, our findings show for the first time that nonmammalian vertebrates retain two quite separate melanopsin genes, while mammals have just one. These data raise important questions regarding the functional differences between Opn4x and Opn4m pigments, the associated adaptive advantages for most vertebrate species in retaining both melanopsins, and the implications for mammalian biology of lacking Opn4x.
在哺乳动物中,黑视蛋白基因(Opn4)编码一种感光色素,它是新发现的视网膜内感光细胞的基础。自从在非洲爪蟾中首次发现黑视蛋白基因,并随后在人类和小鼠中进行描述以来,所有脊椎动物类别中都已发现了黑视蛋白基因。到目前为止,所有这些序列都被认为是单个直系同源基因的代表(尽管硬骨鱼中有重复)。在此,我们描述了在鱼类、鸟类和两栖动物基因组中发现新的黑视蛋白基因并对其进行功能表征,这表明实际上脊椎动物已经进化出两种截然不同的黑视蛋白。基于序列相似性、染色体定位和系统发育,我们将新发现的黑视蛋白确定为先前在哺乳动物中描述的黑视蛋白基因的真正直系同源物,并将这一组命名为Opn4m。相比之下,先前在非哺乳动物脊椎动物中发表的黑视蛋白基因代表了黑视蛋白家族的一个独立分支,我们将其命名为Opn4x。在鸡、斑马鱼和非洲爪蟾中进行的逆转录聚合酶链反应(RT-PCR)分析确定了Opn4m和Opn4x基因在已知具有感光性的组织(眼睛、大脑和皮肤)中的表达。在孵化14天的鸡眼中,Opn4m mRNA存在于外核层、内核层和神经节细胞层的一部分细胞中,其中绝大多数细胞也表达Opn4x。重要的是,我们表明新黑视蛋白的一个代表(鸡Opn4m)编码一种感光色素,在Neuro-2a细胞中进行异源表达时,该色素能够以光和视黄醛依赖的方式激活G蛋白信号级联反应。对脊椎动物基因组进行的全面计算机分析表明,虽然大多数脊椎动物物种都同时拥有Opn4m和Opn4x基因,但真兽类哺乳动物以及可能的有袋类哺乳动物中不存在Opn4x基因,在其进化过程中由于染色体重组而丢失。因此,我们的研究结果首次表明,非哺乳动物脊椎动物保留了两种截然不同的黑视蛋白基因,而哺乳动物只有一种。这些数据引发了关于Opn4x和Opn4m色素之间功能差异、大多数脊椎动物物种保留这两种黑视蛋白的相关适应性优势以及缺乏Opn4x对哺乳动物生物学的影响等重要问题。