Suppr超能文献

比较转录组学揭示了海洋双壳类动物中光合作用分子机制的平行进化和创新。

Comparative transcriptomics revealed parallel evolution and innovation of photosymbiosis molecular mechanisms in a marine bivalve.

机构信息

Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA.

Museum of Natural History, University of Colorado Boulder, Boulder, USA.

出版信息

Proc Biol Sci. 2024 May;291(2023):20232408. doi: 10.1098/rspb.2023.2408. Epub 2024 May 29.

Abstract

Photosymbioses between heterotrophic hosts and autotrophic symbionts are evolutionarily prevalent and ecologically significant. However, the molecular mechanisms behind such symbioses remain less elucidated, which hinders our understanding of their origin and adaptive evolution. This study compared gene expression patterns in a photosymbiotic bivalve () and a closely related non-symbiotic species () under different light conditions to detect potential molecular pathways involved in mollusc photosymbiosis. We discovered that the presence of algal symbionts greatly impacted host gene expression in symbiont-containing tissues. We found that the host immune functions were suppressed under normal light compared with those in the dark. In addition, we found that cilia in the symbiont-containing tissues play important roles in symbiont regulation or photoreception. Interestingly, many potential photosymbiosis genes could not be annotated or do not exhibit orthologues in transcriptomes, indicating unique molecular functions in photosymbiotic bivalves. Overall, we found both novel and known molecular mechanisms involved in animal-algal photosymbiosis within bivalves. Given that many of the molecular pathways are shared among distantly related host lineages, such as molluscs and cnidarians, it indicates that parallel and/or convergent evolution is instrumental in shaping host-symbiont interactions and responses in these organisms.

摘要

异养宿主和自养共生体之间的共生现象在进化上普遍存在,具有重要的生态学意义。然而,这些共生关系背后的分子机制仍不太清楚,这阻碍了我们对它们的起源和适应性进化的理解。本研究比较了不同光照条件下光合双壳贝类()与其近缘非共生种()的基因表达模式,以检测可能涉及软体动物光合共生的分子途径。我们发现,藻类共生体的存在极大地影响了共生体组织中宿主的基因表达。与黑暗条件相比,我们发现正常光照下宿主的免疫功能受到抑制。此外,我们发现共生体组织中的纤毛在共生体的调控或光感受中发挥重要作用。有趣的是,许多潜在的光合共生基因在转录组中无法注释或没有直系同源物,这表明光合双壳贝类中存在独特的分子功能。总的来说,我们在双壳贝类中发现了动物-藻类光合共生所涉及的新的和已知的分子机制。鉴于许多分子途径在亲缘关系较远的宿主谱系(如软体动物和刺胞动物)中都有共享,这表明平行和/或趋同进化在塑造这些生物体内的宿主-共生体相互作用和反应中起着重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1861/11285757/69c53b97f7f2/rspb.2023.2408.f001.jpg

相似文献

1
Comparative transcriptomics revealed parallel evolution and innovation of photosymbiosis molecular mechanisms in a marine bivalve.
Proc Biol Sci. 2024 May;291(2023):20232408. doi: 10.1098/rspb.2023.2408. Epub 2024 May 29.
3
Polymorphic adaptations in metazoans to establish and maintain photosymbioses.
Biol Rev Camb Philos Soc. 2018 Nov;93(4):2006-2020. doi: 10.1111/brv.12430. Epub 2018 May 28.
4
Tracking the early events of photosymbiosis evolution.
Trends Plant Sci. 2024 Apr;29(4):406-412. doi: 10.1016/j.tplants.2023.11.005. Epub 2023 Nov 27.
5
Comparison of Independent Evolutionary Origins Reveals Both Convergence and Divergence in the Metabolic Mechanisms of Symbiosis.
Curr Biol. 2020 Jan 20;30(2):328-334.e4. doi: 10.1016/j.cub.2019.11.053. Epub 2020 Jan 2.
6
Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups.
Proc Natl Acad Sci U S A. 2021 Jul 20;118(29). doi: 10.1073/pnas.2104378118.
7
The chimerical and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regeneration.
Front Microbiol. 2014 Oct 2;5:498. doi: 10.3389/fmicb.2014.00498. eCollection 2014.
8
Rapid compensatory evolution can rescue low fitness symbioses following partner switching.
Curr Biol. 2021 Sep 13;31(17):3721-3728.e4. doi: 10.1016/j.cub.2021.06.034. Epub 2021 Jul 12.
9
New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism?
Commun Integr Biol. 2013 Jul 1;6(4):e24560. doi: 10.4161/cib.24560. Epub 2013 Apr 22.
10
Host control and nutrient trading in a photosynthetic symbiosis.
J Theor Biol. 2016 Sep 21;405:82-93. doi: 10.1016/j.jtbi.2016.02.021. Epub 2016 Feb 27.

引用本文的文献

1
Differential gene reactions reveal drought response strategies in African acacias.
Plant J. 2025 Aug;123(3):e70385. doi: 10.1111/tpj.70385.
4
Convergent Evolution of Armor: Thermal Resistance in Deep-Sea Hydrothermal Vent Crustaceans.
Biology (Basel). 2024 Nov 21;13(12):956. doi: 10.3390/biology13120956.
5
Photosymbiosis shaped animal genome architecture and gene evolution as revealed in giant clams.
Commun Biol. 2025 Jan 4;8(1):7. doi: 10.1038/s42003-024-07423-8.
6
The genome sequence of Gravenhorst, 1807.
Wellcome Open Res. 2024 Nov 7;9:660. doi: 10.12688/wellcomeopenres.23298.1. eCollection 2024.
7
The genome sequence of the common green Tenthredo,  Linnaeus, 1758.
Wellcome Open Res. 2024 Oct 11;8:80. doi: 10.12688/wellcomeopenres.18992.2. eCollection 2023.
8
The genome sequence of the heart cockle, (Issel, 1869).
Wellcome Open Res. 2024 Jul 10;9:366. doi: 10.12688/wellcomeopenres.22585.1. eCollection 2024.

本文引用的文献

1
Eyeless razor clam Sinonovacula constricta discriminates light spectra through opsins to guide Ca and cAMP signaling pathways.
J Biol Chem. 2024 Jan;300(1):105527. doi: 10.1016/j.jbc.2023.105527. Epub 2023 Dec 1.
2
Unlocking the Complex Cell Biology of Coral-Dinoflagellate Symbiosis: A Model Systems Approach.
Annu Rev Genet. 2023 Nov 27;57:411-434. doi: 10.1146/annurev-genet-072320-125436. Epub 2023 Sep 18.
3
Ribonucleotide reductase M2 (RRM2): Regulation, function and targeting strategy in human cancer.
Genes Dis. 2022 Dec 28;11(1):218-233. doi: 10.1016/j.gendis.2022.11.022. eCollection 2024 Jan.
4
Origins and diversification of animal innate immune responses against viral infections.
Nat Ecol Evol. 2023 Feb;7(2):182-193. doi: 10.1038/s41559-022-01951-4. Epub 2023 Jan 12.
6
Form and function of the mantle edge in Protobranchia (Mollusca: Bivalvia).
Zoology (Jena). 2022 Aug;153:126027. doi: 10.1016/j.zool.2022.126027. Epub 2022 Jun 28.
7
Terbinafine prevents colorectal cancer growth by inducing dNTP starvation and reducing immune suppression.
Mol Ther. 2022 Oct 5;30(10):3284-3299. doi: 10.1016/j.ymthe.2022.06.015. Epub 2022 Jun 27.
8
Comprehensive Landscape of RRM2 with Immune Infiltration in Pan-Cancer.
Cancers (Basel). 2022 Jun 14;14(12):2938. doi: 10.3390/cancers14122938.
9
Symbiotic organs: the nexus of host-microbe evolution.
Trends Ecol Evol. 2022 Jul;37(7):599-610. doi: 10.1016/j.tree.2022.02.014. Epub 2022 Apr 5.
10
Organismal and cellular interactions in vertebrate-alga symbioses.
Biochem Soc Trans. 2022 Feb 28;50(1):609-620. doi: 10.1042/BST20210153.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验