Suppr超能文献

运用聚类分析评估饮食模式的比较策略。

Comparative strategies for using cluster analysis to assess dietary patterns.

作者信息

Bailey Regan L, Gutschall Melissa D, Mitchell Diane C, Miller Carla K, Lawrence Frank R, Smiciklas-Wright Helen

机构信息

Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16801, USA.

出版信息

J Am Diet Assoc. 2006 Aug;106(8):1194-200. doi: 10.1016/j.jada.2006.05.012.

Abstract

OBJECTIVES

To characterize dietary patterns using two different cluster analysis strategies.

DESIGN

In this cross-sectional study, diet information was assessed by five 24-hour recalls collected over 10 months. All foods were classified into 24 food subgroups. Demographic, health, and anthropometric data were collected via home visit.

SUBJECTS

One hundred seventy-nine community-dwelling adults, aged 66 to 87 years, in rural Pennsylvania.

STATISTICAL ANALYSIS

Cluster analysis was performed.

RESULTS

The methods differed in the food subgroups that clustered together. Both methods produced clusters that had significant differences in overall diet quality as assessed by Healthy Eating Index (HEI) scores. The clusters with higher HEI scores contained significantly higher amounts of most micronutrients. Both methods consistently clustered subgroups with high energy contribution (eg, fats and oils and dairy desserts) with a lower HEI score. Clusters resulting from the percent energy method were less likely to differentiate fruit and vegetable subgroups. The higher diet quality dietary pattern derived from the number of servings method resulted in more favorable weight status.

CONCLUSIONS

Cluster analysis of food subgroups using two different methods on the same data yielded similarities and dissimilarities in dietary patterns. Dietary patterns characterized by the number of servings method of analysis provided stronger association with weight status and was more sensitive to fruit and vegetable intake with regard to a more healthful dietary pattern within this sample. Public health recommendations should evaluate the methodology used to derive dietary patterns.

摘要

目的

采用两种不同的聚类分析策略来描述饮食模式。

设计

在这项横断面研究中,通过在10个月内收集的5次24小时饮食回忆来评估饮食信息。所有食物被分为24个食物亚组。通过家访收集人口统计学、健康和人体测量数据。

研究对象

宾夕法尼亚州农村地区179名年龄在66至87岁之间的社区居住成年人。

统计分析

进行聚类分析。

结果

两种方法在聚集在一起的食物亚组方面存在差异。两种方法所产生的聚类在通过健康饮食指数(HEI)评分评估的总体饮食质量上均存在显著差异。HEI评分较高的聚类中大多数微量营养素的含量显著更高。两种方法均一致地将能量贡献高的亚组(如油脂和乳制甜点)聚为HEI评分较低的类别。基于能量百分比法得出的聚类不太可能区分水果和蔬菜亚组。基于份数法得出的饮食质量较高的饮食模式与更有利的体重状况相关。

结论

对相同数据使用两种不同方法对食物亚组进行聚类分析,在饮食模式上既有相似之处也有不同之处。以份数分析法为特征的饮食模式与体重状况的关联更强,并且在该样本中对于更健康的饮食模式而言,对水果和蔬菜摄入量更敏感。公共卫生建议应评估用于得出饮食模式的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验