van Drongelen Wim, Koch Henner, Elsen Frank P, Lee Hyong C, Mrejeru Ana, Doren Erin, Marcuccilli Charles J, Hereld Mark, Stevens Rick L, Ramirez Jan-Marino
Department of Pediatrics, The University of Chicago, Chicago, IL 60637-1470, USA.
J Neurophysiol. 2006 Nov;96(5):2564-77. doi: 10.1152/jn.00446.2006. Epub 2006 Jul 26.
Most types of electrographic epileptiform activity can be characterized by isolated or repetitive bursts in brain electrical activity. This observation is our motivation to determine mechanisms that underlie bursting behavior of neuronal networks. Here we show that the persistent sodium (Na(P)) current in mouse neocortical slices is associated with cellular bursting and our data suggest that these cells are capable of driving networks into a bursting state. This conclusion is supported by the following observations. 1) Both low concentrations of tetrodotoxin (TTX) and riluzole reduce and eventually stop network bursting while they simultaneously abolish intrinsic bursting properties and sensitivity levels to electrical stimulation in individual intrinsically bursting cells. 2) The sensitivity levels of regular spiking neurons are not significantly affected by riluzole or TTX at the termination of network bursting. 3) Propagation of cellular bursting in a neuronal network depended on excitatory connectivity and disappeared on bath application of CNQX (20 microM) + CPP (10 microM). 4) Voltage-clamp measurements show that riluzole (20 microM) and very low concentrations of TTX (50 nM) attenuate Na(P) currents in the neural membrane within a 1-min interval after bath application of the drug. 5) Recordings of synaptic activity demonstrate that riluzole at this concentration does not affect synaptic properties. 6) Simulations with a neocortical network model including different types of pyramidal cells, inhibitory interneurons, neurons with and without Na(P) currents, and recurrent excitation confirm the essence of our experimental observations that Na(P) conductance can be a critical factor sustaining slow population bursting.
大多数类型的脑电图癫痫样活动的特征是脑电活动中出现孤立的或重复性的爆发。这一观察结果促使我们去确定神经元网络爆发行为背后的机制。在此我们表明,小鼠新皮质切片中的持续性钠(Na(P))电流与细胞爆发有关,并且我们的数据表明这些细胞能够将网络驱动至爆发状态。以下观察结果支持了这一结论。1)低浓度的河豚毒素(TTX)和利鲁唑均可降低并最终停止网络爆发,同时它们也消除了单个具有内在爆发特性的细胞的内在爆发特性以及对电刺激的敏感水平。2)在网络爆发终止时,利鲁唑或TTX对规则发放神经元的敏感水平没有显著影响。3)神经元网络中细胞爆发的传播取决于兴奋性连接性,并在浴加CNQX(20微摩尔)+ CPP(10微摩尔)后消失。4)电压钳测量表明,浴加药物后1分钟内,利鲁唑(20微摩尔)和极低浓度的TTX(50纳摩尔)可减弱神经膜中的Na(P)电流。5)突触活动记录表明,该浓度下的利鲁唑不影响突触特性。6)使用包含不同类型锥体细胞、抑制性中间神经元、有和没有Na(P)电流的神经元以及反复兴奋的新皮质网络模型进行的模拟证实了我们实验观察的本质,即Na(P)电导可能是维持群体缓慢爆发的关键因素。