Suppr超能文献

持续性钠电流对新生大鼠运动模式生成的作用。

Contribution of persistent sodium current to locomotor pattern generation in neonatal rats.

作者信息

Tazerart Sabrina, Viemari Jean-Charles, Darbon Pascal, Vinay Laurent, Brocard Frédéric

机构信息

Laboratoire de Plasticité et Physio-Pathologie de la Motricité, Unité Mixte de Recherche 6196, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.

出版信息

J Neurophysiol. 2007 Aug;98(2):613-28. doi: 10.1152/jn.00316.2007. Epub 2007 Jun 13.

Abstract

The persistent sodium current (I(NaP)) is known to play a role in rhythm generation in different systems. Here, we investigated its contribution to locomotor pattern generation in the neonatal rat spinal cord. The locomotor network is mainly located in the ventromedial gray matter of upper lumbar segments. By means of whole cell recordings in slices, we characterized membrane and I(NaP) biophysical properties of interneurons located in this area. Compared with motoneurons, interneurons were more excitable, because of higher input resistance and membrane time constant, and displayed lower firing frequency arising from broader spikes and longer AHPs. Ramp voltage-clamp protocols revealed a riluzole- or TTX-sensitive inward current, presumably I(NaP), three times smaller in interneurons than in motoneurons. However, in contrast to motoneurons, I(NaP) mediated a prolonged plateau potential in interneurons after reducing K(+) and Ca(2+) currents. We further used in vitro isolated spinal cord preparations to investigate the contribution of I(NaP) to locomotor pattern. Application of riluzole (10 muM) to the whole spinal cord or to the upper lumbar segments disturbed fictive locomotion, whereas application of riluzole over the caudal lumbar segments had no effect. The effects of riluzole appeared to arise from a specific blockade of I(NaP) because action potential waveform, dorsal root-evoked potentials, and miniature excitatory postsynaptic currents were not affected. This study provides new functional features of ventromedial interneurons, with the first description of I(NaP)-mediated plateau potentials, and new insights into the operation of the locomotor network with a critical implication of I(NaP) in stabilizing the locomotor pattern.

摘要

已知持续性钠电流(I(NaP))在不同系统的节律产生中发挥作用。在此,我们研究了其对新生大鼠脊髓运动模式产生的贡献。运动网络主要位于腰上段的腹内侧灰质中。通过切片中的全细胞记录,我们对位于该区域的中间神经元的膜和I(NaP)生物物理特性进行了表征。与运动神经元相比,中间神经元更易兴奋,这是由于其输入电阻和膜时间常数更高,并且由于动作电位更宽和后超极化时间更长,其放电频率更低。斜坡电压钳制方案显示,一种对利鲁唑或河豚毒素敏感的内向电流,推测为I(NaP),在中间神经元中的大小是运动神经元中的三分之一。然而,与运动神经元不同的是,在降低钾离子和钙离子电流后,I(NaP)在中间神经元中介导了一个延长的平台电位。我们进一步使用体外分离的脊髓标本研究I(NaP)对运动模式的贡献。将利鲁唑(10 μM)应用于整个脊髓或腰上段会干扰虚拟运动,而将利鲁唑应用于腰下段则没有效果。利鲁唑的作用似乎源于对I(NaP)的特异性阻断,因为动作电位波形、背根诱发电位和微小兴奋性突触后电流均未受到影响。本研究提供了腹内侧中间神经元的新功能特征,首次描述了I(NaP)介导的平台电位,并对运动网络的运作有了新的认识,I(NaP)对稳定运动模式具有关键意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验