theMachine Learning Group, Université Catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium.
IEEE Trans Biomed Eng. 2012 Jan;59(1):241-7. doi: 10.1109/TBME.2011.2171037. Epub 2011 Oct 10.
This paper proposes a method for the automatic classification of heartbeats in an ECG signal. Since this task has specific characteristics such as time dependences between observations and a strong class unbalance, a specific classifier is proposed and evaluated on real ECG signals from the MIT arrhythmia database. This classifier is a weighted variant of the conditional random fields classifier. Experiments show that the proposed method outperforms previously reported heartbeat classification methods, especially for the pathological heartbeats.
本文提出了一种在心电图信号中自动分类心跳的方法。由于这项任务具有时间依赖性观察和强烈的类别不平衡等特点,因此提出并评估了一种特定的分类器在来自麻省理工学院心律失常数据库的真实心电图信号上的性能。该分类器是条件随机场分类器的加权变体。实验表明,所提出的方法优于先前报道的心跳分类方法,特别是对于病理性心跳。